
1

Creating Dynamic Web Pages with Application Dispatcher:

Getting Started with SAS/IntrNet Software
Mickey Waxman, Academic Computing, University of Kansas

Larry Hoyle, IPPBR, University of Kansas

ABSTRACT
This "virtual" hands-on workshop will give a basic
introduction to using SAS Application Dispatcher to create
World Wide Web pages on demand. Workshop participants
will learn how to create an HTML form which will invoke a
SAS program on a server via the Application Dispatcher.
They will also learn how to construct a SAS program which
produces web pages upon request from such an HTML form.
No previous knowledge of HTML is required.

Overview
Consider the following transaction. Jane Doe fires up her
Web browser and browses her way to my Web page.
Looking at my Web page she finds she can request further
information on a variety of topics. She makes a few
selections, and clicks on the Submit button. Then SAS on
my server wakes up, processes a set of data and sends a
bar chart back to her browser showing the information she
requested.

What did I have to do to make this possible? Two things,
essentially: (1) create a Web page that contains a form that
references my SAS program and (2) write the SAS program
that collaborates with this Web page. This workshop
teaches the basics on how to create these two components.

Figure 1. Jane’s Web browser sends a request to my Web
server asking for a copy of my Web page. This HTML file is
duly sent to Jane’s computer where her browser interprets
the HTML and displays my Web page. In her browser Jane
selects options and enters data in the HTML form specifying
what further information she is requesting. Then she clicks
on the Submit button.

Figure 2. Jane’s browser assembles her selections into a
message, which is sent to my Web server. My Web server
sees that the request is addressed to my Application Broker,
starts "Broker", a CGI program included in the SAS/IntrNet
package, and passes it the message from Jane’s browser.
The Application Broker interprets and processes the request
data and then establishes contact with my Application
Server. The Application Server, a SAS session waiting for
action, processes the input from Broker, creates a fileref
named _webout, which points back through Broker to Jane’s
browser, and creates a set of macro variables containing
the request data. The Application Server then finds the
specified SAS program that I wrote and runs it with those
predefined macro variables. The macro variables are what
convey information from Jane’s browser to my SAS program.
Output from this SAS program is written to _webout, which
streams the output to the Application Broker. Broker does a
little processing of the output before passing it to the Web
server. The Web server then sends the output to Jane’s
browser.

That’s probably more detail than you care to know, but
someday you’ll thank us for this.

1. Get my.html

Jane’s
Browser

My
Web Server

My.html

Browser Server

3. my.html

2.

Figure 1, Jane gets web page

1. Get Broker
graph=bar var=x
_Program=my.sas
_Service=myapp

Jane’s
Browser

My
Web Server

Browser Server

Figure 2, Jane runs my SAS program

Broker

2. Launch Broker
graph=bar var=x
_Program=my.sas
_Service=myapp

Application Server “myapp”

3. run my.sas graph=bar
var=x

My.sas

4.

5.output
(graph) sent
back

6.

7.

2

Example Applications

This workshop will use six example
applications, each of which has an
HTML file and a SAS program.
Thumbnails of what the user sees
when using the applications are
shown on this page, with the HTML
form on the left and the output from
the SAS program, as delivered back
to the browser, on the right.
The first example, in the first row, is a
simple “Howdy World” program. It
also displays the time to show that an
application with no input values can
deliver dynamic information.

The second application prints back
the value of an input parameter. The
third (not shown) prints back
selections from a multiple select box.

The fourth application sends back the
value of the input field in a graphic
image file (GIF).

The fifth application uses an input
parameter to choose between two
procedures.

The final application shows some
debugging tools.

HTML Form Results from SAS

3

Howdy World
This Dispatcher application runs a SAS program that prints a
message and the time. This is a dynamic application in that it
produces a different page each time it is run, but it requires
no input parameters from the user.

In order for the SAS program to be run, the HTML file which
requests it must contain three references: a pointer to SAS
Institute supplied program named “Broker”, the name of a
Broker service, and a reference to the SAS program to be
run.

 The pointer to Broker appears in the “action=” clause of the
HTML “FORM” tag. Broker itself is an executable which your
system administrator configures to have one or more
“services”. Each service corresponds to one or more SAS
sessions running on a server.

The name of the service to be used appears as the value of
a field named “_SERVICE” in the HTML form. It can be user
selectable or it can appear in a “hidden” field as it does in
figure 3. In this case the value “mwsug98” does not appear
on screen for the user since the type of the INPUT field is
“hidden”. It is, however, passed to the server as
“_SERVICE=mwsug98” when the form is submitted.

The name of the SAS program to run in figure3 is
“howdy.sas”. Its location is pointed to by the libname
“clientXX”. This reference is passed to the server
as”_PROGRAM=clientXX.howdy.sas”. Dispatcher
applications may also run source programs, SCL code, or
macros in SAS catalog entries,

The SAS program, clientXX.howdy.sas, which is referenced
by the “_PROGRAM” field above, is shown in figure 4. The
important features of this program are the reference to the
output fileref “_webout”, and the HTTP header which is the
first output sent to _webout.

When Broker sets up for howdy.sas to be run, it inserts a
fileref to _webout at the beginning of the code to be run.
Anything written to this fileref ends up being sent back to the
browser from which the form in figure 3 was submitted.

In order for the browser to interpret this output correctly, it
must be preceeded by a “Hypertext Transfer Protocol
(HTTP)” header. This header must end with a null line. Note
the “/” at the end of the highlighted “put” statement in figure
4. The “/” is necessary in that it generates the needed null
line. The HTTP header in this example, ’Content-type:
text/html’ , informs the browser that what follows is to be
interpreted as HTML. While many browsers will display
output without any HTML codes, it is a good idea to include
at least the required elements: <HTML></HTML>,
<HEAD></HEAD>, and <BODY></BODY>.

<HTML>

 <HEAD>
 <TITLE>Howdy, A no input field form</TITLE>
 </HEAD>

 <BODY>

 <FORM action=’http://brokerpath/broker’>

 <INPUT type=hidden
name=_SERVICE
value=mwsug98>

 <INPUT type=hidden
name=_PROGRAM
value=clientXX.howdy.sas>

 <INPUT type=submit
value="run a SAS program ">

 </FORM>

 </BODY>

</HTML>

figure 3, howdy.htm

/* --- */
/* howdy.sas - a hello world program */
/* for trying the application dispatcher. */
/* --- */

data _null_;

file _webout;

t=time();
d=date();

put ’Content-type: text/html’/;

put ’<H1>Howdy, a SAS program wrote this on:</H1>’;
put d date7. ’ at: ’ t time. ;

run;

figure 4, clientXX.howdy.sas

4

A Form With One Input Field
The second example, shown in figure 5, adds a field to the
form into which a user can enter information. In this
particular case the field has a name of “XYZ”, and has no
default value. If a user were to enter the value “13” into the
field, the browser would send “XYZ=13” to Broker when the
form was submitted. A separate name=value pair is sent for
each field entered in the form.

The SAS program clientXX.1field.sas, shown in figure 6,
receives the value “XYZ” as a predefined macro variable.
Broker sets up this macro variable automatically for each
name=value pair it receives. It is a good idea, though, to
have a %global statement for each parameter the SAS
program references. This will force the creation of an empty
macro variable when no name=value pair is sent.

An Application Dispatcher program can reference a macro
variable containing a form parameter (e.g. XYZ) as:
”&XYZ”;
or
%superq(XYZ);
or
with symget(‘XYZ’);
Parameters are also available to an Application Dispatcher
SCL program via an SCL list.

Using the “&XYZ” method is a security risk. It can be used to
insert undesired SAS code into your application. The symget
and SCL list methods are safest. Figure 7 shows a sample
macro to strip out dangerous characters from the form fields.
These include the percent sign, ampersand, quotes,
semicolon and comma, as well as carriage return and line
feed.

You may also want to check the length of a parameter. In
figure 6 "XYZ" is read into the variable sg and then printed. It
may get truncated, but this will not crash the program. In
figure 8b the statement:
 put "You ordered %superq(FIXINS0) topping.";
will crash the application if the quoted string gets longer than
200 characters.

Note, though, that this example doesn’t explicitly write an
HTTP header, unlike the clientXX.howdy.sas example. This
is because the “runmode=s” option of the %out2html macro
indicates that the application is running in “server” mode.
When both “runmode=s” and “openmode=replace” are
specified, an HTTP header is automatically written.

<HTML>
 <HEAD>
 <TITLE>A one field form</TITLE>
 </HEAD>
 <BODY>

 <FORM action=’http://brokerpath/broker’>
 <INPUT type=hidden

name=_SERVICE
value=mwsug98>

 <INPUT type=hidden
name=_PROGRAM
value=clientXX.1field.sas>

 <INPUT type=text
name=XYZ> the parameter "XYZ"

 <P>
 <INPUT type=submit

value=”send it to a SAS program”>
 </FORM>
 </BODY>
</HTML> figure 5, 1field.htm

/* --- */
/* 1field.sas - Reads one field from the browser */
/* --- */

%global XYZ;

 options nosource nonotes;
 /* -- */
 /* send the log window to the browser */
 /* -- */

%out2htm(capture=on, window=log);

data _null_;

 sg=symget(’XYZ’);

 put "Field XYZ contained: " / sg ;

run;

%out2htm(htmlfref=_webout,
 capture=off,
 window=log,
 runmode=s,
 openmode=replace);

figure 6, clientXX.1field.sas

%macro noexit(myname);
data _null_;
m = symget("&myname");
n = translate(trim(left(m)),
 ’____________________’,
 ’%&"()’’;,’,
 ’__’,
 ’0A0D’x);
call symput("&myname",trim(n));
run;
%mend noexit;

figure 7, a macro to remove nasty characters

5

Multiple Selection Parameters
An HTML form can allow multiple values to be selected for a
single parameter. Figure 8a shows an HTML file which
defines a select box which allows a user to select any
combination from pickles, mustard, maple syrup and onions.
By default the first three are selected.

Suppose the default is submitted. The browser will send
FIXINS=pickles&FIXINS=mustard&FIXINS=maple-syrup.
Broker would create the following macro variables in this
situation.

%let FIXINS0=3;
%let FIXINS=pickles;
%let FIXINS1=pickles;
%let FIXINS2=mustard;
%let FIXINS3=maple-syrup;

If only onions were picked Broker would set up only:
%let FIXINS=onions;

Figure 8b shows an example of SAS code to handle the form
in figure 8a. Note that FIXINS, FIXINS0, and FIXINS1 are
declared global so that they always exist even when one or
no selection was made in the browser.

The macro prep sets values for FIXINS0 and FIXINS1 in
cases were Broker doesn’t. If, for example, only one choice
is selected, Broker would not set FIXINS0 and FIXINS1. In
this case, to make later coding easier, prep sets FIXINS0 to
1. FIXINS1 is always set to the same value as FIXINS.

The macro use in figure 8b shows how the parameters might
be used. In this simplistic example FIXINS0 is used to loop
through the selections and echo them back to the user.

<HTML>
 <HEAD>
 <TITLE>A multiple select form</TITLE>
 </HEAD>
 <BODY>

 <FORM action=’http://brokerpath/broker’>
 <INPUT type=hidden

name=_SERVICE
value=mwsug98>

 <INPUT type=hidden
name=_PROGRAM
value=clientXX.multi.sas>

<P>
What do you want on your veggie burger?

 <SELECT name=FIXINS MULTIPLE >

<OPTION SELECTED>pickles
<OPTION SELECTED>mustard
<OPTION SELECTED>maple-syrup
<OPTION>onions

 </SELECT name=MXYZ MULTIPLE >
<INPUT type=submit

value=”send it to a SAS program”>
 </FORM>
 </BODY>
</HTML>

figure 8a, multi.htm

/* --- */
/* multi.sas - Reads multi select */
/* --- */
%global FIXINS;
%global FIXINS0 FIXINS1;
options nosource nonotes;
 %out2htm(capture=on, window=log);
 /* ____________________________________ */
 /* Make the "0" and "1" macro variables */
 /* if necessary. Simplifies later code */
 /* ____________________________________ */
%macro prep;
data _null_; /* no parameters */
%IF %superq(FIXINS)= %THEN %DO;
 call symput("FIXINS0","0");
%END;
%ELSE %DO; /* at least 1 */
 /* just 1 */
 %IF %superq(FIXINS0)= %THEN %DO;
 call symput("FIXINS0","1");
 %END;
%END;
 call symput("FIXINS1",symget("FIXINS"));
run;
%mend prep;
%prep
 /* --------------------------------- */
 /* use the macro variables */
 /* --------------------------------- */
%macro use;
data _null_;
%IF %superq(FIXINS0)=1 %THEN %DO;
 put "You ordered %superq(FIXINS0) topping.";
%END;
%ELSE %DO;
 put "You ordered %superq(FIXINS0) toppings.";
%END;

 %IF %superq(FIXINS0) ne 0 %THEN
 %DO fx= 1 %TO %superq(FIXINS0);
 f=symget("FIXINS&fx"); put f;
 %END;
run;
%mend use;
%use

 %out2htm(htmlfref=_webout, capture=off,
 window=log runmode=s,
 openmode=replace);

%let FIXINS=;
%let FIXINS0=;
%let FIXINS1=;

figure 8b, clientXX.multi.sas

6

Creating a Graphic
The next example has a form which has 2 user editable
fields. The second field is a “select box” which allows the
user to select from a list of options. When the form is
submitted, the browser receives a graphic image (a GIF file).

The SAS program clientXX.slide.sas first writes an HTTP
header to tell the browser that a GIF graphic follows. That
header is ’Content-type: image/gif. Note that the SAS
program should write no other text to _webout, otherwise the
browser would see a corrupted gif file.

Selecting one of the GIF drivers creates the graphic file. In
figure 9b the driver is “gif160” which produces an image 160
pixels across. Specifying the gsfname=_webout graphic
option results in the graphic being sent back to the browser.
The gsfmode=replace option causes the driver to write a
proper internal header for the graphic.

The actual creation of the graphic can be done by a number
of components of the SAS system. In figure 9b, PROC
GSLIDE is used to create a slide from the contents of the
XYZ field.

<HTML>
 <HEAD>
 <TITLE>Make a GIF file</TITLE>
 </HEAD>
 <BODY>
 <FORM action=’http://brokerpath/broker’>
 <INPUT type=hidden

name=_SERVICE value=mwsug98>
 <INPUT type=hidden

name=_PROGRAM value=clientXX.slide.sas>

 The text for the graphic

 <INPUT type=text name=XYZ>

 <P>The text color

 <SELECT name=tcolor size=4>
 <OPTION value="blue" SELECTED>Blue </OPTION>
 <OPTION value="red">ruby red</OPTION>
 <OPTION value="green">oz green</OPTION>
 <OPTION value="black">plain old black</OPTION>
 </SELECT>

 <P>
 <INPUT type=submit value="send me a GIF file">
 </FORM>
 </BODY>
</HTML>

figure 9a, slide.htm

/* --- */
/* slide.sas - show the input as a GIF file */
/* --- */

%global XYZ TCOLOR;

/* these statments can be used to test without the application
dispatcher
filename _webout ’d:\InetPub\wwwroot\sugi23\grphout.gif’;
%let XYZ=testme;
*/

 /* --- */
 /* generate an HTTP header for a GIF file */
 /* don’t run this data step if testing locally */
 /* -- */
data _null_;
 file _webout;
 put ’Content-type: image/gif’/;

run;

 /* ----------------------------------- */
 /* use a GIF graphics device */
 /* ----------------------------------- */
goptions device=gif160
 gsfmode=replace
 gsfname=_webout;

 /* -- */
 /* set the color from an input parameter */
 /* -- */

goptions ctitle=%superQ(TCOLOR);

 /* ----------------------------- */
 /* generate the graphic */
 /* ----------------------------- */

proc gslide frame;
 note h=10 move=(8,15) f=brush %superQ(XYZ);

run;
figure 9b, clientXX.slide.sas

7

Selecting Code
The Dispatcher program clientXX.iffy.sas is shown in the 4
part figure 10.This application shows the use of an input field
to select code to be executed.
The initial section in figure 10a creates a test dataset.

Figure 10e contains the code which actually makes the
selection. If the value of the input field is “A”, then the macro
“CHOICEA” is invoked. Input of “B” causes “CHOICEB” to be
invoked. Any other input invokes “OOPS”.
Figure 10b contains the macro definition for CHOICEA.
It uses the “%ds2htm” macro to send the browser the test
dataset as an HTML table. Figure 10c contains the
definitions for CHOICEB. ChoiceB uses the tab2htm macro
to send back an HTML table from a PROC TABULATE.
OOPS in Figure 10d handles errors.

 /* --- */
 /* the second choice - */
 /* tabulate to HTML formatting tool */
 /* --- */
%macro CHOICEB;
 %tab2htm(capture=on);
 options linesize=96 pagesize=54 nocenter
 nodate nonumber;
 title ’Example: Tabulated TEST dataset’;
 proc tabulate data=WORK.TEST
 formchar=’82838485868788898a8b8c’x;
 table Y ALL , (Z W) * (’MEAN’ ’STD’) ;
 var Z W ;
 class Y ;
 run;
 %tab2htm(capture=off,
 runmode=s,
 openmode=replace,
 htmlfref=_webout,
 brtitle=tabulated TEST dataset,
 center=Y);
%mend CHOICEB;

figure 10c, part 3 of clientXX.iffy.sas

/* --- */
/* iffy.sas - select logic based on a form */
/* --- */

%global CHOICE;

options mprint;

 /* ---------------------------- */
 /* make a test dataset */
 /* ---------------------------- */

data test;
do x=1 to 5;
 do y=1 to 3;
 z=x*y;
 w=round(1000*rannor(1213131),.1);
 output;
 end;
end;
run;

figure 10a, part 1 of clientXX.iffy.sas

 /* --- */
 /* first choice - dataset to HTML */
 /* formatting tool */
 /* -- */
%macro CHOICEA;

 %ds2htm(data=test,
 runmode=s,
 openmode=replace,
 htmlfref=_webout,
 caption=this is the TEST dataset,
 ccolor=blue,
 tbbgcolr=cyan);

%mend CHOICEA;

figure 10b, part 2 of clientXX.iffy.sas

 /* code selection - macro PICKONE invokes */
 /* either the macro "CHOICEA" or "CHOICEB" */

%macro PICKONE;

%IF %upcase(%superq(CHOICE))=A %THEN %DO ;
 %CHOICEA;
%END;
%ELSE %IF %upcase(%superq(CHOICE))=B %THEN %DO;
 %CHOICEB;
%END;
%ELSE %DO;
 %OOPS;
%END;

%MEND PICKONE;
%PICKONE;

figure 10e, part 5 of clientXX.iffy.sas

 /* -- */
 /* this prints out an error message */
 /* -- */
%macro OOPS;
 data _null_;
 file _webout;
 pick=symget(’CHOICE’);
 put ’Content-type: text/html’// ’Unknown choice:’/ pick;
 run;
%mend OOPS;

figure 10d, part 4 of clientXX.iffy.sas

8

Debugging Tools
A special parameter, “_DEBUG” is interpreted by Broker.
The value of _DEBUG is the sum of a number of powers
of 2. If _DEBUG includes a “1” in the sum, then Broker
will echo all of the fields sent from the client’s form. If it
contains a “2”, Broker will send back the time.

Suppose, for example, Broker receives _DEBUG=3.
Then it will echo all fields and send back the time.

Figure 11b contains a form and an associated JavaScript
script which allows you to select components of the
_DEBUG field with radio buttons. These buttons appear
in pairs with the same field name, e.g. df2. The browser
will allow only one button of each pair to be selected at a
time. If you turn a parameter “on” the off button is
deselected automatically.

Note that the form which sends parameters Broker must
have a “Name=f” clause, and an _DEBUG field for this
script to work. Figure 11a and 11b together are an
example HTML file using the _DEBUG field. The
associated SAS program “W_debug.sas” is not shown.

The JavaScript code in Figure 11b runs in the browser.
Some of the JavaScript code appears inside the
<SCRIPT>…</SCRIPT> pair of tags, and some appears
as the value of onClick in the
<INPUT type=radio … > tags.

The onClick="comp_debug()" parameters set up event
handlers to be executed when the radio buttons are
clicked. The function comp_debug() recomputes the
value of the DEBUG parameter and then inserts it into
the f.DEBUG text box.

<SCRIPT Language=”JavaScript”>
 // This function, together with the FORM which follows
 // sets the _DEBUG variable in the preceding form.
 // The form with _DEBUG must have a "name=f" parameter
 // in its "FORM" tag
function comp_debug(){
 with(document.dbf){
 newdb=0;
 if(_df1[1].checked) newdb=newdb+parseInt(_df1[1].value);
 if(_df2[1].checked) newdb=newdb+parseInt(_df2[1].value);
 if(_df4[1].checked) newdb=newdb+parseInt(_df4[1].value);
 if(_df8[1].checked) newdb=newdb+parseInt(_df8[1].value);
 if(_df16[1].checked) newdb=newdb+parseInt(_df16[1].value);
 if(_df128[1].checked)newdb=newdb+parseInt(_df128[1].value);
 if(_df256[1].checked)newdb=newdb+parseInt(_df256[1].value);
 if(_df512[1].checked)newdb=newdb+parseInt(_df512[1].value);
 document.f._DEBUG.value = newdb;
 }
} // ends comp_debug
</SCRIPT>

<FORM name=dbf>
<INPUT type=radio name=_df1 value=0 checked

onClick="comp_debug();">off
<INPUT type=radio name=_df1 value=1

onClick="comp_debug();">on - Echo all fields.

<INPUT type=radio name=_df2 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df2 value=2
onClick="comp_debug();">on - Print elapsed time.

<INPUT type=radio name=_df4 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df4 value=4
onClick="comp_debug();">on - List definition of all services, don’t

run.
<INPUT type=radio name=_df8 value=0 checked

onClick="comp_debug();">off
<INPUT type=radio name=_df8 value=8

onClick="comp_debug();">on - Skip all execution processing.
<INPUT type=radio name=_df16 value=0 checked

onClick="comp_debug();">off
<INPUT type=radio name=_df16 value=16

onClick="comp_debug();">on - Display output in hexadecimal.
<INPUT type=radio name=_df128 value=0 checked

onClick="comp_debug();">off
<INPUT type=radio name=_df128 value=128

onClick="comp_debug();">on - Send back log file.
<INPUT type=radio name=_df256 value=0 checked

onClick="comp_debug();">off
<INPUT type=radio name=_df256 value=256

onClick="comp_debug();">on - Trace socket connection attempts.
<INPUT type=radio name=_df512 value=0 checked

onClick="comp_debug();">off
<INPUT type=radio name=_df512 value=512

onClick="comp_debug();">on - Show socket host and port number.

 </FORM>
 </BODY>
</HTML>

figure11b, part 2 of W_debug.htm

<HTML>
 <HEAD>
 <TITLE>Some help debugging</TITLE>
 </HEAD>
 <BODY>
 <FORM name=f

action=’http://brokerpath/broker’>
 <INPUT type=hidden name=_SERVICE

value=wrkshp124>
 <INPUT type=hidden name=_PROGRAM

value=clientXX.W_debug.sas>

 <INPUT type=text name=XYZ>

parameter "XYZ"
 <P>
 <INPUT type=submit

value="send it to a SAS program">
 <HR>
 <P>
 <INPUT type=text name=_DEBUG

value=0> parameter "_DEBUG"
 </FORM>

figure11a, part 1 of W_debug.htm

9

Errors You Might See
Figure 12a contains some error messages you might see
when debugging an Application Dispatcher application. The
condition under which you might see the error is shown in
boldface, and the error message Broker sends back is
shown below that.

In example 1 the Uniform Resource Locator (URL) listed in
the “action=” clause of the form tag had a typo in the
directory portion of the path to Broker. You might see other
messages if the typo is in the name of the server.

In example 2 the libname portion of the _PROGRAM field
was misspelled.

In example 3 the program name portion of the _PROGRAM
field was misspelled.

In example 4 the program type portion of the _PROGRAM
field was misspelled.

In example 5 the service in the _SERVICE field is
misspelled.

Example 6 happened when the SAS program failed to write
anything to “_webout”. This could have been due to a
missing “FILE” statement, or an incorrect parameter in the
“%out2html” macro.

Example 7 happened when Broker detected an incorrect
HTTP header. This could be due to a typo or the lack of a
null line at the end of the header.

In example 8 the “%out2html” macro contains an “htmlfile”
parameter. This causes the output to go to an actual file, not
the _webout fileref. The solution is to use the htmlfref
parameter.

The example in figure 12b is a little different. Here the SAS
program used the “&XYZ” construct in an assignment
statement. When the contents of field XYZ is as in the
second line of the figure, the put ’oops’ portion of the macro
variable value was executed as SAS code. This illustrates
the nature of the security problem using the “&XYZ” type
construct on unfiltered input. Dangerous characters can be
edited out with code like that in figure 7.

1 - Bad "Action=URL"
HTTP/1.0 403 Access Forbidden (Execute Access Denied – This
Virtual Directory does not allow objects to be executed.)

2 - Bad libname
Application Error
The library clientX is not allocated for the current service. Check the
spelling of the library name. If it is spelled correctly contact the server
administrator and notify him/her of the problem.

3 - Bad program name
Application Error
The program clientXX.field.sas does not exist.

4 - Bad Program type
Application Error
The program type 1FIELD is invalid.

5 - Bad Service
Error in HTML form
The service "wax_oy" is not listed in the configuration file.

6 - No output to _webout
Error reading SAS output
The SAS program did not produce any output. This could happen if
one of the early steps failed. Set _DEBUG=131 and resubmit in
order to see the SAS Log file, or set _DEBUG=16 to see a hex dump
of the output.

7 - bad HTTP header
Invalid HTTP header
The SAS program did not produce a valid HTTP header. It must at
least have a line like:
 Content-type: text/html
followed by a blank line to define the output MIME type. "Location:" is
also allowed. Set _DEBUG=131 and resubmit in order to see the
SAS Log file, or set _DEBUG=18 to see a hex dump of the output.

8 - %out2htm(htmlfile=_webout,
 capture=off,
 window=log,
 runmode=s,
 openmode=replace); (you should use htmlfref)
Error reading SAS output
The SAS program did not produce any output. This could happen if
one of the early steps failed. Set _DEBUG=131 and resubmit in
order to see the SAS Log file, or set _DEBUG=16 to see a hex dump
of the output.

Figure 12a, error messages you might seeTry this value of XYZ with w_debug.sas
test3";put ’oops’;put"

NOTE: Capture of log output started.
oops
Field XYZ contained:
test3

Figure 12b, insecurity with “&XYZ”

10

Tips

Some errors in your Application Dispatcher programs are
capable of stopping or locking up the Application Dispatcher
SAS session. When you are developing new Application
Dispatcher programs you will want to use a different service
for the development.

Broker can be configured to set up a service which launches
a separate SAS session. This is a good tool for initial testing,
but if you will be running the application within a SAS
Application Server session, you should test it under a test
version of that server too.

One SAS command in particular should be avoided - the
"ABORT" statement. Use some other technique to end your
Dispatcher program.

Think about security. Write your SAS code in such a way
that if someone writes their own HTML form they can’t insert
new SAS code which will execute on your server. Avoid the
"¯ovar" reference form. Be careful with the
"%superQ(macrovar)" construct too.

This paper has dealt with only one component of the
SAS/IntrNet package. Other components may be more
appropriate for a given task. The htmSQL facility, for
example, offers a very simple method for invoking SQL
statements on the server and embedding the results in
dynamic HTML output. There are also a number of tools for
using server side SAS with client side Java.

Resources and References
The best source for information on using SAS/IntrNet is the
SAS Institute World Wide Web site. Click n the Web
Enablement link on their home page. The home page is:

SAS Institute Inc., SAS Home Page. http://www.sas.com.

Other references:

Flanagan, David (1997), JavaScript The Definitive Guide.
Sebastopol, CA: O’Reilly & Associates, Inc.

Grobe, Michael,
HTML quick reference
http://www.cc.ukans.edu/~acs/docs/other/HTML_quick.shtml
Academic Computing Services
The University of Kansas

Grobe, Michael ,
An instantaneous introduction to CGI scripts
and HTML forms
http://www.cc.ukans.edu/~acs/docs/other/forms-intro.shtml
Academic Computing Services
The University of Kansas

The National Center for Supercomputing Applications, NCSA
Beginner’s Guide to HTML
http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrim
er.html

SAS/IntrNet is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries.  Indicates
USA registration.

Mickey Waxman mickey@ukans.edu
Larry Hoyle mailto:l-hoyle@ukans.edu
 http://www.ukans.edu/cwis/units/IPPBR

The examples from this paper can be found at:
ftp://ftp2.cc.ukans.edu/pub/ippbr/papers/mwsug98

