Paper 084-2009

Implementing Stack and Queue Data Structures with SAS® Hash Objects
Larry Hoyle, Institute for Policy and Social Research, University of Kansas

ABSTRACT

The SAS hash object is a convenient tool for implementing two common data structures, the stack and the queue. While either
of these may be implemented with arrays, the hash object implementation offers the advantage of dynamic memory
management — a maximum memory size does not need to be specified in advance. This paper includes a set of SAS macros
that can be used in a DATA step to create and delete stacks or queues and to enter or remove data from those data
structures.

INTRODUCTION
STACKS

A stack is an ordered list of items. Items are added to the list at the top and items are removed from the top. Since the last
item added to the list is the first removed from the list, stacks are also known as “Last In First Out” (LIFO) lists. A stack is
easily implemented in an array, requiring only a pointer variable to point to the position of the top element of the stack.

QUEUES

A queue is also an ordered list of items, differing from a stack in that the first item added to the queue is the first item to be
removed. A queue is also known as a “First In First Out” (FIFO) list. A queue can also be implemented in an array, but
managing the pointers to the beginning and end of the array is somewhat more complicated — as the queue runs into the end
of the physical array it must wrap around to the beginning of the array to use any space freed by removing items from the
queue.

THE HASH OBJECT

A hash object is comparable to an array except that the index into the array, the key, need not be ordered. (In Perl, a hash is
known as an associative array). The SAS hash object automatically allocates memory as items are added. In this application
the key is a sequential number which, in the case of the queue, can just continue to grow larger as the smallest values are
abandoned. Using a key of length 8 should allow 9,007,199,254,740,992 (the largest integer represented exactly) insertions
into a queue, which is probably adequate for most applications.

WHY BOTHER?

One reason for using these macros would be to implement a known algorithm that is expressed in terms of stack and queue
operations. Checking that a data step correctly implemented that algorithm would be much easier if it were written using push
and pop statements or queue and dequeue statements than if those operations were written in terms of conventional DATA
step code. Such an example is presented at the end of this paper.

STACK MACROS

The basic operations needed to use a stack are: create the stack, delete the stack, add an item to the stack (push), delete an
item from the stack (pop), and check the length of the stack. An additional operation to dump the contents of the stack can be
useful for testing. Macros for implementing these operations are listed below.

smacro StackDefine (stackName = Stackl, /* Name of the stack - use the name in */
/* push and pop of this stack */

dataType = n, /* Datatype n - numeric */
/* ¢ - character */

dataLength = 8, /* Length of data iitems */
hashexp = 8, /* Hashexp for the hash - see the */
/* documentation for the */

/* hash object. You may want to increase */

/* this for a stack that */

/* will get really large */

rc = Stackl rc) ; /* Return code for stack operations */
/* the macro will create the following data */

/* objects and variables */

/* &StackName. Hash, the hash object used for the stack */

/* &StackName. key, the hash object key variable */

/* &StackName. data, the hash object data variable */

/* &StackName._ end, variable to hold the number of objects */

/* in the stack */

retain &StackName. end O0; /* empty stack has 0 items */
length &StackName. key 8; /* key is numeric count of items in the stack */
- /* making this length 4 would save memory and work */
/* for a large number of items in the stack */
call missing(&StackName. key) ; /* explicit assignment so SAS does not complain */
$IF &dataType EQ n $THEN %DO;
length &StackName. data &datalength;
retain &StackName. data 0;
$END;
$ELSE %DO;
length &StackName. data $ &datalength;
retain &StackName. data ' ';
$END;
declare hash &StackName. Hash (hashexp: &hashexp) ;
&rc = &StackName. Hash.defineKey ("&StackName. key");
&rc = &StackName. Hash.defineData ("&StackName. data");
&rc = &StackName. Hash.defineDone () ;
- /* ITEM SIZE attribute available in SAS 9.2
itemSize = &StackName. Hash.ITEM SIZE; */
itemSize = 8 + &datalength;
put "Stack &StackName. Created. Each Item will take " ItemSize " bytes.";
smend StackDefine;
$macro StackPush (stackName = Stackl, /* Name of the stack -
InputData = Stackl data, /* Variable containing value to be pushed
StackLength = Stackl length, /* Returns the length of the stack
rc = Stackl_rc) ; /* return code for stack operations
&StackName. end+1 ; /* mnew item will go in new location in the hash

&StackLength &StackName. end;
&StackName. key &StackName. end;
&StackName. data &InputData;

&rc &StackName. Hash.add() ;

if &rc ne 0 then put "NOTE:

&StackName. end= ;

smend StackPush;

PUSH to stack &stackName failed

/* new value goes at the end */
*/

/* value from &InputData

&InputData=

$macro StackPop (stackName = Stackl, /* Name of the stack -
OutputData = Stackl_data, /* Variable containing value to be pushed
StackLength = Stackl length, /* Returns the length of the stack
rc = Stackl rc); /* return code for stack operations
if &StackName. end > 0 then do;
&StackName. key = &StackName. end; /* return value comes off of the end */

&rc
if &rc ne 0 then put "NOTE:
&StackName. end= ;

&StackName. Hash.find() ;

&OutputData &StackName. data;

&rc &StackName. Hash.remove () ;
if &rc ne 0 then put "NOTE:

&StackName. end= ;

&StackName. end

&StackLength = &StackName._end;
end;
else do;

&rc = 999999;

put "NOTE: Cannot pop empty stack

end;
$mend StackPop;

POP from stack

POP from stack

&StackName. end - 1 ;

&stackName could not find

*/

remove the item from the hash */

/* value into &InputData
/*

&stackName could not remove

stack now has 1 fewer item */

/*

&StackName into &OutputData ";

$macro StackLength (stackName = Stackl, /* Name of the stack -
StackLength = Stackl length, /* Returns the length of the stack
rc = Stackl rc) ; /* return code for stack operations
&StackLength = &StackName. end;

$mend StackLength;

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/

$macro StackDelete (stackName
rc = Stackl_rc

&rc = &StackName.

)i
ash.delete() ;

= Stackl,

/* Name of the stack - */
/* return code for stack operations */

if &rc ne 0 then put "NOTE: Cannot delete stack &StackName ";
$mend StackDelete;

$macro StackDump (stackName
Stackl rc) i
if &StackName. end <= 0 then do;

put // "Stack &Stackname is empty";

end;

else do;

/*

rc =

Stackl,

&StackName. end <= 0 */

/* Name of the stack - */
/* return code for stack operations */

put // " Contents of Stack &Stackname:";
do ixStack = 1 to &StackName. end ;
= ixStack;

&StackName._ key
&StackName. Hash.find() ;
"item " ixStack

&rc
put

QUEUE MACROS

The basic operations needed to use a queue are: create the queue, delete the queue, add an item to the queue (enqueue),
delete an item from the queue (dequeue), and check the length of the queue. An additional operation to dump the contents of
the queue can be useful for testing. Macros for implementing these operations are listed below. The advantage of using a
hash object to underlie the queue can be seen in the QueueEnqueue operation where the key for a new item can always be
just 1 more than the previous value and in the QueueDequeue operation, where cleaning up after removing an item is just a

matter of issuing the remove operation.

"value " &StackName. data;
end; /* do ixStack = 1 to &StackName. end */

end; /* not &StackName. end <= 0

$mend StackDump;

*/

smacro QueueDefine (QueueName = Queuel, /* ©Name of the Queue - use in enqueue and */
/* dequeue */

dataType = n, /* Datatype n - numeric */

/* ¢ - character */

datalLength = 8, /* Length of data items */

hashexp = 8, /* Hashexp for the hash - see the */

/* documentation for the hash object. */

/* You may want to increase this for */

/* a Queue that will get really large */

rc = Queuel_rc); /* return code for Queue operations */

/* the macro will create the following data objects and variables */
/* &QueueName. Hash, the hash object used for the Queue */
/* &QueueName. key, the hash object key variable */
/* &QueueName. data, the hash object data variable */
/* &QueueName. old, variable points to the first item put */
/* in the queue */
/* &QueueName. new, variable points to the last item put */
/% in the queue */
/* &QueueName. len, number of items in the queue */
retain &QueueName. new O0; /* empty Queue has 0 locations in the hash */
retain &QueueName. old 1; /* old will be at location 1 when something is added */
retain &QueueName. len O0; /* empty Queue has 0 items */
length &QueueName. key 8; /* key is numeric count of items in the Queue */
call missing(&QueueName. key) ; /* explicit assignment so SAS does not complain */

$IF &dataType EQ n $THEN %DO;
length &QueueName. data &datalength;
retain &QueueName. data 0;

$END;

%$ELSE %DO;
length &QueueName. data

retain &QueueName. data '

$END;

$ &datalength;

1.
7

declare hash &QueueName. Hash (hashexp: &hashexp) ;
&rc &QueueName. Hash.defineKey ("&QueueName. key");
&rc &QueueName._ Hash.defineData ("&QueueName._data") ;

3

&rc = &QueueName. Hash.defineDone () ;
/* ITEM SIZE attribute available in SAS 9.2
itemSize = &QueueName. Hash.ITEM SIZE; */
itemSize = 8 + &datalength;
put "Queue &QueueName. Created. Each Item will take " ItemSize " bytes.";

$mend QueueDefine;

$macro QueueEnqueue (QueueName = Queuel, /* Name of the Queue - */

InputData = Queuel data, /* Variable containing value to be enqueued */
QueueLength = Queuel length, /* Returns the length of the Queue */
rc = Queuel rc) ; /* return code for Queue operations */

&QueueName. new+l ; /* item goes at new key in hash */

&QueueName. len+1 ; /* Queue is 1 longer */

&QueuelLength = &QueueName._len;

&QueueName. key = &QueueName. new; /* new value goes at the end */

&QueueName._data = &InputData; /* value from &InputData */

&rc = &QueueName. Hash.add() ;

if &rc ne 0 then put "NOTE: Enqueue to Queue &QueueName failed " &InputData=
&QueueName. new= ;
$mend QueueEnqueue;

$macro QueueDequeue (QueueName = Queuel, /* Name of the Queue - */
OutputData = Queuel data, /* Variable containing value to be dequeued*/
QueueLength = Queuel length, /* Returns the length of the Queue */
rc = Queuel rc) ; /* return code for Queue operations */

if &QueueName. len > 0 then do;
&QueueName. key = &QueueName. old; /* return value comes from the oldest location */
/* in the hash */

&rc = &QueueName. Hash.find() ;

if &rc ne 0 then put "NOTE: Dequeue from Queue &QueueName could not find "
&QueueName. new= ;

&OutputData = &QueueName. data; /* value into &InputData */

&rc = &QueueName. Hash.remove() ; /* remove the item from the hash */

if &rc ne 0 then put "NOTE: Dequeue from Queue &QueueName could not remove "
&QueueName. new= ;

&QueueName. old+1 ; /* item comes from oldest location in the hash */
&QueueName. len+ (-1) ; /* Queue is 1 shorter */
&QueueLength = &QueueName. len;

end;

else do;

&rc = 999999;
put "NOTE: Cannot Dequeue empty Queue &QueueName into &OutputData ";
end;
$mend QueueDequeue;

$macro QueuelLength (QueueName = Queuel, /* Name of the Queue - */
QueuelLength = Queuel length, /* Returns the length of the Queue */
rc = Queuel rc) ; /* return code for Queue operations */

&QueuelLength = &QueueName. len;
$mend QueueLength;

smacro QueueDelete (QueueName = Queuel, /* Name of the Queue - */
rc = Queuel rc) ; /* return code for Queue operations */
&rc = &QueueName. Hash.delete() ;

if &rc ne 0 then put "NOTE: Cannot delete Queue &QueueName ";
$mend QueueDelete;

$macro QueueDump (QueueName = Queuel, /* Name of the Queue - */
rc = Queuel rc /* return code for Queue operations */
)i
if &QueueName. len <= 0 then do;
put // "Queue &Queuename is empty";

end; /* &QueueName. end <= 0 */
else do;
put // " Contents of Queue &Queuename:";

do ixQueue = &QueueName._old to &QueueName._new ;
&QueueName. key = ixQueue;
&rc = &QueueName. Hash.find() ;
put "item " ixQueue "value " &QueueName. data;
end;
end;
$mend QueueDump;

TESTING

The two sections which follow show test code and the resulting output to the log. The test code creates stack and a queue,
checks queue length, adds some items, dumps the data structure, removes some items, and deletes the data structure.
Resulting output to the SAS Log is shown in boxes to the right of the code.

TEST CODE - STACK

data test;

put /// 'Stack Test' /; Stack Test
if n =1 then do;
%StackDefine (stackName = testStack,

dataType = n, .
datalength = 8, Stack testStack Created. Each Item will take 16 bytes.

define: testStack rc=0

hashexp = 8,
rc = testStack rc
)

put 'define: ' testStack rc=;
end;
%StackLength (stackName = testStack,
StackLength = testStack_length, length: testStack_length=0 testStack rc=0
rc = testStack rc);
put / 'length: ' testStack length = testStack rc=;

push: myData=1 myDataPopped=.
testStack_length=1
testStack_rc=0 testStack_end=1

%StackDump (stackName = testStack, Stack testStack is empty

rc = testStack rc); push: myData=2 myDataPopped=.
testStack_length=2
testStack_rc=0 testStack_end=2
put; push: myData=3 myDataPopped=.
do myData = 1 to 5; testStack_length=3
%StackPush (stackName = testStack, testStack_rc=0 testStack_end=3

push: myData=4 myDataPopped=.
testStack_length=4
testStack_rc=0 testStack_end=4
push: myData=5 myDataPopped=.
)i testStack_length=5
put 'push: ' myData= myDataPopped= testStack length= / testStack_rc=0 testStack_end=5

! ! testStack rc= testStack end=;

InputData = myData,
StackLength = testStack_ length,
rc = testStack rc

end;
Contents of Stack testStack:
%StackDump (stackName = testStack, rc = testStack rc); !tem 1 value 1
- item 2 value 2
put; item 3 value 3
do ixPOp - 1 to 6; item 4 value 4
%StackPop (stackName = testStack, item 5 valiie 5

OutputData = myDataPopped,
StackLength = testStack length, testStack_rc=0 testStack_end=4

rc = testStack rc pop: ixPop=2 myData=6 myDataPopped=4 testStack_length=3
)i testStack_rc=0 testStack_end=3

pop: ixPop=1 myData=6 myDataPopped=5 testStack_length=4

put 'pop: ' ixPop= myData= myDataPoppeds= pop: ixPop=3 myData=6 myDataPopped=3 testStack_length=2
testStack length= / testStack_rc=0 testStack_end=2

! ' testStack rc= testStack end=; pop: ixPop=4 myData=6 myDataPopped=2 testStack_length=1
end; - - testStack_rc=0 testStack_end=1

pop: ixPop=5 myData=6 myDataPopped=1 testStack_length=0
testStack_rc=0 testStack_end=0

NOTE: Cannot pop empty stack testStack into myDataPopped

pop: ixPop=6 myData=6 myDataPopped=1 testStack_length=0
testStack_rc=999999 testStack_end=0

%StackDump (stackName = testStack,
rc = testStack rc);

Stack testStack is empty

put;
%StackDelete (stackName = testStack,
rc = testStack rc

)i

put / 'delete: '

run;

testStack rc=;

delete: testStack rc=0

TEST CODE - QUEUE

data test;
put /// 'Queue Test' /; Queue Test
if n =1 then do;
%QueueDefine (QueueName = testQueue,
dataType = n,

Queue testQueue Created. Each Item will take 16 bytes.
define: testQueue_rc=0

datalLength = 8,
hashexp = 8,

rc = testQueue rc
) ;
testQueue_rc=;

put 'define: '

end;

length: testQueue_length=0 testQueue_rc=0

%QueueLength (QueueName = testQueue,
QueueLength = testQueue_length,
rc = testQueue rc);

put / 'length: ' testQueue length =

%QueueDump (QueueName = testQueue,

testQueue_rc=;

EnQueue: myData=1 myDataEnQueued=.
testQueue_length=1
testQueue_rc=0 testQueue_new=1 testQueue_old=1

EnQueue: myData=2 myDataEnQueued=.
testQueue_length=2
testQueue_rc=0 testQueue_new=2 testQueue_old=1

EnQueue: myData=3 myDataEnQueued=.
testQueue_length=3
testQueue_rc=0 testQueue_new=3 testQueue_old=1

EnQueue: myData=4 myDataEnQueued=.
testQueue_length=4
testQueue_rc=0 testQueue_new=4 testQueue_old=1

EnQueue: myData=5 myDataEnQueued=.
testQueue_length=5
testQueue_rc=0 testQueue_new=5 testQueue_old=1

rc = testQueue rc);
Queue testQueue is empty
put;
do myData = 1 to 5;
%QueueEnqueue (QueueName = testQueue,
InputData = myData,
QueueLength = testQueue_ length,
rc = testQueue rc
)i
put / 'EnQueue: ' myData= myDataEnQueued=
testQueue length= /
! ' testQueue rc= testQueue new=
testQueue old=;
end; Contents of Queue testQueue:

item 1 value 1
item 2 value 2
item 3 value 3
item 4 value 4
item 5 value 5

%QueueDump (QueueName = testQueue,
rc = testQueue rc);

put;

do ixQ = 1 to 6;

%QueueDequeue (QueueName =
OutputData =
QueueLength =
rc =
)i

'deQueue: !

testQueue,

myDataEnQueued,
testQueue length,

testQueue_rc

put / ixQ= myData= myDataEnQueued =

testQueue length= /

testQueue_rc= testQueue_new=

testQueue old=;

end;

%QueueDump (QueueName = testQueue,
rc = testQueue rc);

Queue testQueue is empty

deQueue: ixQ=1 myData=6 myDataEnQueued=1 testQueue_length=4
testQueue_rc=0 testQueue_new=5 testQueue_old=2

deQueue: ixQ=2 myData=6 myDataEnQueued=2 testQueue_length=3
testQueue_rc=0 testQueue_new=5 testQueue_old=3

deQueue: ixQ=3 myData=6 myDataEnQueued=3 testQueue_length=2
testQueue_rc=0 testQueue_new=5 testQueue_old=4

deQueue: ixQ=4 myData=6 myDataEnQueued=4 testQueue_length=1
testQueue_rc=0 testQueue_new=5 testQueue_old=5

deQueue: ixQ=5 myData=6 myDataEnQueued=5 testQueue_length=0
testQueue_rc=0 testQueue_new=5 testQueue_old=6

NOTE: Cannot Dequeue empty Queue testQueue into

myDataEnQueued

put;

%QueueDelete (QueueName = testQueue,
rc = testQueue rc
) .
! delete: testQueue _rc=0
put / 'delete: ' testQueue rc=; Q -
run;

EXAMPLE — COMPUTING BETWEENNESS CENTRALITY

The program that follows is an example of using the stack and queue macros to implement Brandes’ algorithm for computing
the betweenness centrality statistic for a social network. Using the stack and queue macros makes verifying that the code
follows the algorithm (shown in the comments) much easier.

data Betweenness (keep = VertexNumber Vertex CentralityBetween NumberOfNeighbors) ;
set &inputDyads end=last nobs=ndyads;
length VertexID NeighborNumber NeighborID CentralityBetween 8 ;
length Q Queue length Q Queue rc 8;
length w Neighbor 8;
length Vertex Stext Vtext Wtext $ &maxVertexChars;
format CentralityBetween 10.1;

array CB Betweenness{&NVertices} 8 _temporary (&NVertices*0) ;

array P Via{&NVertices} $ &maxPathLen _temporary ;
array Sigma nShortest{&NVertices} 8 _temporary (&NVertices*0);
array d minimumPathLength{&NVertices} 8 temporary (&NVertices*0);

array delta dependency{&NVertices} 8 _temporary (&NVertices=*0);

array NeighborsPerVertex{&NVertices} 8 temporary (&NVertices=*0) ;

if n =1 then do;
declare hash NeighborsHash (hashexp: 8);

rc NeighborsHash.defineKey ("VertexID", "NeighborNumber") ;

rc NeighborsHash.DefineData ("NeighborID") ;
rc = NeighborsHash.defineDone () ;
call missing(VertexID, NeighborNumber, NeighborID) ;

MemoryRequired = &nVertices * (8 + &Nvertices + 8 + 8 + 8 + 8 + 16 + 16)
+ nDyads * 16;
put 'Memory required ' MemoryRequired ' bytes';
put 'Building table of neighbors...';
end;

VertexIDfrom = input (&VertexFrom,VertID.) ;
VertexIDto = input (&VertexTo,VertID.) ;

VertexID = VertexIDfrom;
NeighborsPerVertex{VertexID}+1;
NeighborNumber = NeighborsPerVertex{VertexID};
NeighborID = VertexIDto;

neighborAdd rc=NeighborsHash.add() ;

if last then do;
put 'Analyzing shortest paths...';
do ixS = 1 to &NVertices;
sText = put(ixS, vertName.) ;

if mod(ixs, &dotEvery) = 0 then put '.' ;
if mod(ixs, &vertexEvery) = 0 then put '----' stext ixs ;
%$StackDefine (stackName = S_Stack, S <=== Empty Stack
dataType = n,
dataLength = 8,
hashexp = 8,
keyLength = 8,
rc = Stack rc
)i
do ixW = 1 to &NVertices;
P Via{ixw} = ' ';
end;

do ixT = 1 to &NVertices;

if ixT ne ixS then Sigma nShortest{ixT} = 0;
else Sigma nShortest{ixT} = 1;
end;
do ixT = 1 to &NVertices; /*
if ixT ne ixS then d minimumPathLength{ixT} = -1;
else d minimumPathLength{ixT} = 0;
end;
%QueueDefine (QueueName = Q Queue, Q <=== Empty Queue

dataType = n,
datalLength = 8,
hashexp = 8,
keyLength = 8,
rc = Q Queue rc

)i

%QueueEnqueue (QueueName = Q Queue, enqueue s ===> Q
InputData = 1ixS,
QueueLength = Q Queue length,
rc = Q Queue_ rc
)i
do while (Q Queue length > 0);
%QueueDequeue (QueueName = Q Queue, dequeue v <=== Q
OutputData = v,
QueueLength = Q Queue length,
rc = Q Queue_rc

)i

vText = put (v,vertname.) ;

%StackPush (stackName = S_Stack,
InputbData = v, push v ===> S
StackLength = S Stack length,
rc = S_Stack rc

)
if NeighborsPerVertex{v} > 0 then
do ixN = 1 to NeighborsPerVertex{v};

VertexID = v;
NeighborNumber = ixN;

neighborID = .;
NeighborFind rc = NeighborsHash.find() ;
w_Neighbor = NeighborID;

wText = put (w_Neighbor,vertName.) ;

if 4 minimumPathLength{w Neighbor} < 0 then do;
%QueueEnqueue (QueueName = Q Queue, enqueue w ===> Q
InputData = w_Neighbor,
QueueLength = Q Queue length,
rc = Q Queue_ rc

)i

d _minimumPathLength{w Neighbor} = d_minimumPathLength{v} + 1;

end;
if d minimumPathLength{w Neighbor} = d minimumPathLength{v} + 1 then do;
Sigma nShortest{w Neighbor} = Sigma nShortest{w Neighbor} +
Sigma_ nShortest{v};
if P Via{w Neighbor} = ' ' then P Via{w Neighbor} = strip(put(v,8.));

else P _Via{w Neighbor} = catx('-',
P Via{w Neighbor},

put (v, 8.)
)i
end;
end;
end; while Q not empty do
do ixV = 1 to &NVertices;
delta dependency{ixV} = 0;
end;
while S not empty
do while (S_Stack length > 0);
%StackPop (stackName = S Stack, pop w <=== S

OutputData = w_Neighbor,
StackLength = S_Stack_length,
rc = S Stack rc

)i

wText = put(w_Neighbor,vertName.) ;

iXWN = 1;
do while (scan(P Via{w Neighbor},ixWN,'-') ne ' ');
v=input (scan(P_Via{w Neighbor},ixWN,'-'),8.);

vText = put (v,vertName.) ;
1XWN=1xWN+1;

delta_dependency[v] = delta dependency(v) +
sigma nShortest (v) / sigma_nShortest (w_Neighbor) *
(1 + delta dependency (w_Neighbor)) ;
end;

if w_Neighbor ne ixS then do;
CB_Betweenness{w Neighbor} = CB Betweenness{w Neighbor} +
delta dependency (w_Neighbor) ;
end;
end;

clear out stack and queue
%$StackDelete (stackName = S_Stack,
rc = Stack rc);
%QueueDelete (QueueName = Q Queue,
rc = Queuel rc);
end;

do vertexNumber = 1 to &NVertices;
vertex = put (vertexNumber,vertName.) ;
CentralityBetween = CB_Betweenness{vertexNumber} / 2;
NumberOfNeighbors = NeighborsPerVertex{vertexNumber} ;
sigma = sigma_ nShortest (vertexNumber) ;
delta = delta dependency (vertexNumber) ;
output;

end;

end;
run;

REFERENCES

e Brandes, Ulrik A Faster Algorithm for Betweenness Centrality Journal of Mathematical Sociology 25(2):163-177,
(2001)

e Hoyle, Larry Visualizing Two Social Networks Across Time with SAS®: Collaborators on a Research Grant vs. Those
Posting on SAS-L. SAS Global Forum 2009 paper 229-2009, Washington D.C., 2009

e Knuth, Donald E. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third Edition (Reading,
Massachusetts: Addison-Wesley, 1997), xx+650pp. ISBN 0-201-89683-4

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Sample code associated with this paper can be found at:

http://www.ipsr.ku.edu/ksdata/sashttp/SGF2009/

Contact the author at:
Larry Hoyle
Institute for Policy & Social Research, University of Kansas
1521 Lilac Lane, Suite 607 Blake Hall

Lawrence, KS, 66044-3177
785-864-9110

LarryHoyle@ku.edu
www.ipsr.ku.edu

SAS and all other SAS Institute Inc. product or service hames are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

10

http://www.ipsr.unit.ku.edu/ksdata/sashttp/SGF2009/

