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Abstract. In this paper we propose a consistent test of the linearity of
quantile regression models, similar to the Integrated Conditional Moment
(ICM) test of Bierens (1982) and Bierens and Ploberger (1997). This test re-
quires re-estimation of the quantile regression model by minimizing the ICM
test statistic with respect to the parameters. We apply this ICM test to exam-
ine the correctness of the functional form of three median regression wage
equations.
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1. Introduction

Median and quantile estimation methods have recently been applied to econ-
omic models because these methods impose fewer restrictions on the data than
widely-used mean regressions. The linear median regression model assumes
that the conditional median of the dependent variable y is a linear function of
the vector x of independent variables. The median regression model is partic-
ularly suitable if the conditional distribution of the y variable is fat-tailed, or if

! Previous versions of this paper have been presented by the first author at the University of
Pennsylvania, the Econometric Society European Meeting 1997, Toulouse, Johns Hopkins
University, and the conference on Economic Applications of Quantile Regression in Konstanz,
Germany. The constructive comments of the co-editor, Bernd Fitzenberger, and a referee, are
gratefully acknowledged.
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the lowest and/or highest values of y are truncated or misreported. The latter
may occur if y is a measure of income, because respondents in the highest
income group will often be reluctant or unwilling to reveal their true income.
Also, the median regression model may serve as an alternative for a Tobit
model if the conditional distribution of the error of the underlying latent
model is symmetric but non-normal.

To the best of our knowledge, the only paper in the econometrics literature
that addresses the problem of consistent testing of the functional form of
quantile regression models is Zheng (1998). Zheng’s approach is based on
weighted kernel regression estimation. In this paper we propose an alterna-
tive consistent test of the linearity of the median regression model, similar
to the Integrated Conditional Moment (ICM) test of Bierens (1982) and
Bierens and Ploberger (1997). This test can easily be extended to more gen-
eral quantile regression models. This test requires re-estimation of the median
regression model by minimizing the ICM test statistic with respect to the
parameters.

Although median and quantile regression has not been used as extensively
as OLS in the empirical literature, recent papers have used this method to es-
timate wage equations and the conditional wage distribution. (See for exam-
ple, Chamberlain 1994, Buchinsky 1994, 1995, 1997, and Poterba and Rueben
1994). However, the applicability of quantile regression is not limited to labor
economics. For example, Chernozhukov and Umantsev (2001) estimate and
analyze the conditional market risk of an oil producers stock price as a fun-
ction of the key economic variables, using quantile regression, and discuss
specification tests as well.

In order to show that not only in theory but also in practice the ICM test
is able to detect misspecification of quantile regressions models, we shall
apply the ICM test to examine the functional form of three wage equations
that has been estimated previously by quantile regression methods, using
a sample of 28,155 male workers taken from the March 1988 Current Pop-
ulation Survey (CPS). All computations have been done using the econo-
metrics software package EasyReg, written by the first author. (EasyReg
is an interactive Windows 95/98/NT freeware program, which is down-
loadable from web page http://econ.la.psu.edu/~hbierens/EASYREG.HTM.
The data is downloadable from web page http://econ.la.psu.edu/~hbierens/
MEDIAN.HTM)

In the discussion of the ICM test for quantile regression models we will
focus on the median regression case. In section 2 of the appendix we show that
only a minor change in the ICM testing protocol is required to cover more
general quantile regression models as well.

2. Median regression models, and LAD estimation

Consider a random sample (y;, x;) € R x R¥, j=1,...,n, where the depen-

dent variable y; is related to the vector x; of explanatory variables, possibly
including a constant 1, by the median regression model

yj =04 x;+¢, where Plg; > 0|x;] = Plg; < 0]x;]. a

As is well known, under some regularity conditions, in particular the condi-
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tions that the error term ¢; is contmuously distributed with zero median and
is independent of x;, and that E(x!x;) < co, the parameter vector 6 can be
estimated consistently by the Least Absolute Dev1at10n (LAD) estimator 0L AD

= argming 37, [y — 07x;[, and /a(OLap — 6o) — Ni(0,(1/12/(0)]*)Q7") in
distribution, where f is the density of ¢ and Q = plim,_ . (1/n) > x]x/T.
See Koenker and Bassett (1978) and the references therein.

The median regression model is equivalent to

w(0) =1(y; — 0% > 0) —I(y; —0'x; <0), E[uj(0)|%,] =0 a.s., )

where 0y € @ = R¥ with O the parameter space, / (+) is the indicator function,
and

Definition 1. X; is an m-vector of components of x; such that the o-Algebra
generated by x; is equal to the o-Algebra generated by X;.

For example, if x; = (1,z, 12) with z; a scalar random variable then X; = z;.
The median regression model is correctly specified if

Hy: 30 € 0: P(E[u;(6y)|%] = 0) = 1. )

We will test the null hypothesis (3) against the general alternative that (3) is
not correct, e.g.

Hy: V0 e 0: P(E[u;(0)|5] = 0) < 1. )

3. Integrated conditional moment testing of median regression models

As has been shown by Bierens (1990, 1994 Sec. 3.3) and Bierens and Ploberger
(1997), these two hypotheses can be distinguished by using an infinite set of
moment conditions of the type E[u;(0)w;(¢)] = 0, where

wi(&) =w(ETd(5)), ek, 6)

with @ a bounded on-to-one mapping, w(-) an analytical function with all but
a finite number of derivatives at zero unequal to zero, and = a subset of a
Euclidean space with positive Lebesgue measure. Bierens (1990) has shown for
the case w(-) = exp(-) that

Theorem 1. Under Hy the set S(0) = {¢ e Z: Eluj(0)w;(&)] = 0} is such that
S(0y) = Z, and for all 0 € ©\{6y}, S(0) has Lebesque measure zero and is
nowhere dense, provided that the parameter 0y in (3) is unique. Under H,, S(0)
has Lebesgue measure zero and is nowhere dense for all 6 € ©.

Bierens and Ploberger (1997) and Stinchcombe and White (1998) have shown
that the same result holds for a much wider class of weight functions w;(-). In
particular, Theorem 1 also holds if we choose

wi(&) = cos(érdﬁ(fcj)) + sin(éTcD(fcj)), e R", 6)
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where @ is the same as in (5). The advantage of this weight function is that
it is uniformly bounded: |w;(¢)| < V2. In this paper we will use the weight
function (6), for reasons to be explained later.

Denoting
0(0) = j [l (0w (&) du(E), )
where

Assumption 1. w;(&) is defined by (5), p is a probability measure on E that is
absolutely continuous with respect to Lebesgue measure, and = is compact with
positive Lebesgue measure,

it follows from Theorem 1 that under Hy, Q(0y) =0, whereas under Hj,
infgep O(0) > 0. This result suggests to use the Integrated Conditional
Moment (ICM) test based on infy. o Q(6), where

0(0) = j 2(0,) 2 du() ®)
with

2(0,8) = (1/n) ) u;(0)w;(S). (C)

j=1

It follows from the result in Bierens (1990) and Bierens and Ploberger
(1997) that under Hy and Assumptions 1,

Vnz(0y,&) = (&), (10)

where “=" means “converges weakly to” [cf. Billingsley (1968)], and z(-) is a
zero mean Gaussian process on = with covariance function

I'(¢1, &) = Elz(&1)z2(&)] = E[Hl(eo)zwl(fl)wl (&2)]- (11)
Note that if
Assumption 2. The conditional distribution of y; given x; is continuous,

then P(y; — 00 x; = 0) = 0, hence uj(ﬁo)2 = 1 a.s. and consequently

I'(&1, &) = Ewi(S)wi (&) (12)
It follows now from Bierens and Ploberger (1997) that under Hj,

n0O(0 &2l
E1(00) — Q( 0) Zz—l i

(Un) S, (@7 du@) L

< sup—>» & =F (13)
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in distribution, where the ¢;’s are independent standard normally distributed,
and the A;s are the solutions of the eigenvalue problem [I'(&,&)¢;(&,) -
du(é) = 2:4,(&1), with the ¢,(¢) the corresponding eigenfunctions. The
eigenvalues 4; are non-negative and real valued, and the eigenfunctions ¢,(&)
are real valued and orthogonal with respect to .

The statistic F,(0p) cannot be used as a test statistic, because ¢y is un-
known. If we would plug in a /n-consistent estimator 6 for 6y, for example

the LAD estimator, we need to take the asymptotic distribution of n(Q(é) —
0(6y)) into account. Under similar conditions as in Powell (1984) and Fit-
zenberger (1997) it is possible to derive the exact asymptotic null distribution

of nQ(@), but this asymptotic distribution involves the unknown conditional
density at zero of the error term ¢; in model (1). In principle we could estimate
this density by a kernel density estimator, but the problem is that the height
of the kernel density estimator is very sensitive for the choice of the window
width, which renders this approach unreliable. For example, the #-values of
the LAD model in Table 3.A below where computed using a kernel density
estimator with standard normal kernel and window width /& = s - n~%2, where
s is the mean of the absolute values of the LAD residuals in deviation of their
sample mean. Its value at zero was 0.8853, but when the window width was
multiplied by a factor 10 this value reduced to 0.5688! A possible alternative
solution is to bootstrap F,(0r4p). However, for large data sets this may take
too much computing time. In particular, the LAD estimation of the model in
Table 3.A below, with 18 parameters and 28,155 observations, took about 15
minutes on a_Pentium II PC, using FasyReg. Thus for this case 1000 boot-
straps of F,(0;4p) would take about 250 hours nonstop! Therefore, we pro-
pose the following more practical approach: Choose

F= _ nQ(0) ’ (14)
(1/m) 32 J04(£))° di(®)
Jj=
as the test statistic of the ICM test, where
0 = argmin O(0). as)

0e®

Then F = Fn(é) < F,(6p), hence the asymptotic inequality in (13) will be pre-
served:

Theorem 2. Under Assumptions 1-2 and Hy, limsup,_,., P(F > F) < P(F > F)
for all non-random F > 0.

Bierens and Ploberger (1997) have shown that

P(F >3.23) =0.10, P(F >4.26) =0.05 (16)
Thus we reject the median regression model at the 10% significance level if
F > 3.23 and at the 5% level if F' > 4.26.

Admittedly, due to the inequality in Theorem 2 the actual size of the test
will be smaller than the theoretical size (16), but this is the price we have to
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pay for feasibility. The actual size will be smaller than the unknown actual
size of the test based on F,(0.4p), which in its turn is smaller than (16). There
is no general answer to the question how much smaller the actual size is: The
size distortion involved depends on the actual value of the conditional error
density at zero, and on the distribution of the X variables (the latter via the
eigenvalues of the covariance function), and therefore varies from case to case.

Note that if we choose the weight function w;(&) as in (6) and the prob-
ability measure 4 symmetric, then J"w_j(é)z du(¢) = 1, so that then F = nQ(0).
It is for that reason, and the fact that then w;(¢) is uniformly bounded, that
we favor the weight function (6). The boundedness of the weight function is
important for our applications, because due to the large sample size the inte-
gral in (8) has to be computed by Monte Carlo simulation. See section 2 of
the appendix

4. Consistency of the ICM test

For the consistency of the ICM test we need to establish that
plim,_,  infyco O(0) > 0 under H,. A sufficient condition for this is that

0(0) — 0(0) as., a7

uniformly in 0 € @. Therefore, we will now set forth condition for uniform
convergence of Q(6).

Under Assumption 2 it follows from the uniform strong law of large
numbers of Jennrich (1969) [cf. Bierens (1994 Sec. 2.7) for details] that

sup |2(0,&) — Eu1 (O)w1(&)]] — 0 a.s., as)

ter

pointwise in 6 € @, hence O(0) — O(0) a.s., pointwise in 0 € . If the function
u;(0) would be continuous in ¢ and the parameter space @ is compact, then
by Jennrich’s (1969) uniform strong law of large numbers this result would
holds uniformly on @ as well. However, for the median regression model
under review the function u;(0) is discontinuous in the parameters, so that the
standard uniform convergence proof [see for example Bierens (1994, Sec. 4.2)]
no longer applies. Nevertheless, it can be shown (see section 1 of the appendix)
that (18) also holds uniformly on @, provided that:

Assumption 3. The parameter space O is compact,

Assumption 4. The conditional density f(y|x) of y; given x; = x satisfies
Efsup, f(y|x1)] < 0.

Then:
Theorem 3. Under Assumptions 1—4, lim,,_... sup,.¢|0(6) — O(0)| = 0 a.s.

Thus, under the alternative hypothesis (4) we have liminf,_,. 0(0) >
infpcQO(0) > 0 a.s., which establishes the consistency of the ICM test.
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5. Local power of the ICM test for the case that 6, is known

In Bierens and Ploberger (1997) it has been shown that the ICM test of the
functional form of conditional expectation models has non-trivial y/n local
power, which is superior to alternative consistent model misspecification tests
based on comparison of the parametric functional form involved with a non-
parametric kernel regression model. See the references in Zheng (1998). In this
section we will therefore derive the local power properties of the ICM test
for median regression models, but only for the special case that 6y is known.
For the general case (14) we need to derive the limiting distribution and rate
of convergence of the ICM estimator (15) under the local alternative, which
can be done similar to Bierens and Ploberger (1997), using the conditions in
Powell (1984) and Fitzenberger (1997). However, since this ICM estimator is
of no particular interest by itself (it only serves an auxiliary role in the ICM
test), deriving this limiting distribution is beyond the scope of this paper. Our
purpose is to show that for this special case the ICM test has better local
power than Zheng’s (1998) test, as a motivation for the use of the ICM test
(14).

The local alternative involved is similar to the local alternative considered
by Zheng (1998):

H: y, =00 x4+ 9(x;) /v + g, 19)

where g is a uniformly bounded nonlinear function of x; such that
Plg(x;) =0] < 1, and ¢ is independent of x;, with continuous distribution
function F(-) satistying F(0) = 0.5. Moreover, let f(-) be the density of ¢,
and assume that f(0) > 0 and f(-) is differentiable with uniformly bounded
derivative f”(-). Furthermore, we may without loss of generality assume fur-
ther that 8y = 0.

Under the local alternative (19) with 6y = 0 and weight function (6), it
follows similarly to Bierens and Ploberger (1997) that

1 n
W;(“wwf(f) = Eluy, jw;()]) = 2.(&) (20)

on &, where u, ; = I[g; > —g(x;)//n] — Igj < —g(x;)/+/n], and z, (&) is a zero
mean Gaussian process with covariance function

L(&1.&) = lim (Efug wi(E0)wi(&2)] = Elttn, jw; ()1 E[j.0;(£2)))

= Ew;(&)wi(&)] = T'(&1,&,). (21

Compare (12). Thus, z.(¢) has the same distribution as the Gaussian
process z(¢) in (10). The second equality in (21) follows from the fact that
E [u,% ;1xj] = 1 a.s., and that by the Taylor expansion and the uniform bound-

edness of g(-), f'(-), and w;(&),
Eluy, jwi(&)] = E[(1 — 2F (—g(x1)/v/n))w; ()]
= (f(0)/vn)Elg(x1)wi ()] + O(1/n)
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uniformly in . It is now not hard to verify that under the local alternative,

nO(0) — j(a(é) £ Elg(x)wi () du(&)

in distribution. Finally, similarly to Bierens and Ploberger (1997) it can be
shown that

J(z*(f) +/(0)Elg(x1)wi (&) du(&) > J(Z*(éf))zdﬂ(é)-

Therefore, in the case that 0 is known the ICM test has non-trivial y/n local
power, whereas in the same case the test by Zheng (1998) has non-trivial local
power only at a slower rate.

For the general case we need to show that (1/y/n)>"" (ity, j — tn, ;) W;(&)

- . j
= z..(&) on ZF for some Gaussian process z..(¢), where

i, ; = Ile; > (0 — 00)"x; — g(x;)/v/n] — Iy < (0 — 00)"x; — g(x;)/v/n),

because then it is guaranteed that under the local alternative, plim, . O(0)

> 0. Again, this can be done under similar conditions as in Powell (1984)
and Fitzenberger (1997), by mimicking the approach in Bierens and Ploberger
(1997).

This comparison of the local power of the ICM test and Zheng’s test is only
a theoretical comparison, and one may wonder how much the finite sample
powers differ. A Monte Carlo study could answer this question, but that is
beyond the scope of this paper. Some preliminary unpublished Monte Carlo
results by Bernd Fitzenberger suggest that the asymptotic advantage of the
ICM test might require very large samples to be present in finite samples.

6. Empirical illustrations
6.1. The data

Linear quantile regression methods have been applied to estimating wage
equations and characterizing the conditional distribution of the log of wages
(Chamberlain 1994, Buchinsky 1994, 1995, 1997, and Poterba and Rueben
1994). This application of the ICM test uses data from the same source as
the above studies, the Current Population Survey (CPS).

This study uses data on males from the 1988 March CPS and uses
criteria similar to Buchinsky (1994) to sample the data. The March CPS
contains information on previous year’s wages, schooling, industry, and oc-
cupation. We select a sample of men ages 18 to 70 with positive annual in-
come greater than $50 in 1992, who are not self-employed nor working with-
out pay. The wage data is deflated by the deflator of Personal Consumption
Expenditure for 1992. Our data contains 28,155 observations and has varia-
bles for age, years of schooling, years of potential work experience, industry,
occupation, and dummy variables for race, region of residence, living in an
SMSA, and working part time.
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6.2. Wage specifications

As an illustration of the performance of the ICM test we examine three
wage equation specifications. The first specification is the traditional Mincer-
type model where the log of weekly wages are regressed on a constant, years
of schooling, years of potential work experience and its square, and a race
dummy. This model is used in most labor papers, including Buchinsky (1994).
The second specification adds a cubic and quartic in potential work experi-
ence. Murphy and Welch (1990) indicate that a quartic in potential work ex-
perience fits the data better than the standard quadratic in experience used
in the Mincer model. Finally, we examine a specification similar to that em-
ployed by Buchinsky (1997). The log of real weekly wages is regressed on years
of schooling and its square, years of potential experience and its square,
schooling interacted with experience, and dummy variables for region, SMSA,
region interacted with SMSA, part time work, race, and race interacted with
schooling, experience, and part time employment. The variable names and
their definitions are:

rwage:  Real weekly wage. Calculated by taking Total Earnings from wages
and salaries last year (1987) divided by weeks worked last year. The
weekly wage is deflated by the deflator for Personal Consumption
Expenditures where 1992 is the base year.

ed: Years of schooling. Years of schooling can take on values from zero
to 18.

exper.  Years of experience: age — years of schooling — 6.

regne:  Dummy variable = 1 if lives in the North East.

regmw: Dummy variable = 1 if lives in the Midwest.

regw: Dummy variable = 1 if lives in the West.

Smsa: Dummy variable = 1 if lives in a Standard Metropolitan Statistical
Area (SMSA).

race: Dummy variable = 1 if black. Only blacks and whites are included

in the sample. The other categories are omitted from the sample.
parttime: Dummy variable = 1 if worked less than 35 hours a week at job last
year.

The other variables in the model are powers or products of these variables.

6.3. Practical implementation of the ICM test
The ICM tests have been conducted using the weight function functions
Wi, /(&) = cos(ETD(F,, ;) + sin(ET D(%,, ;) (22)

(cf. (6)), where @(x) is a vector valued function with components arctan(x;),
and X, ; is the vector of instruments X;, in deviation of their sample means and
standardized by their sample standard errors. See Bierens (1982, 1990) for the
reason for the latter. We recall that only the untransformed regressors need
to be used as instruments. Thus, products and powers of explanatory variables
are excluded from the list of instruments, because the g-Algebra generated by
these instruments is the same as the o-Algebra generated by all regressors. The
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instrumental variables involved in the Tables 1.B—3.B below are in italic.
Moreover, the chosen probability measure 4 in the ICM test is the uniform
probability measure on the hypercube = = [—c¢,¢] X -+ X [—c¢, ¢], where ¢ is
either 1, 5 or 10. The reason for choosing different values of ¢ is the following:
With weight function (22) and the uniform probability measure u involved,
the test statistic of the ICM test takes the form

0eO )_

F(c) = (26)_mminJC JC |(1/\/ﬁ)Zn:uj(U)wm(fﬂzdf
c —c J=1

— min ! Z Z ui(0)1(0) ﬁ sin(c[arctan(X,, ;(k)) —arctan(%,, ;(k))]) ’

clarctan(X,, ;(k)) —arctan(x,, ;(k))]
(23)

where m is the number of instruments, and u;(0) is defined by (2). See (37) in
the appendix for the second equality. If follows now from (23) that

n

F(0) = minl(1/v) > w(0))* — 0 @4)

=1

in distribution, and F (00) = 0. Thus, if we choose ¢ too small or too large, the
power of the test will be negatively affected. Actually, the choice of ¢ is crucial
for the finite sample power of the test. One might think of choosing ¢ as to
maximize the test statistic (23). However, it is not clear whether the conver-
gence in distribution results under the null hypothesis hold uniformly in c.
More research is needed to investigate this issue, which is beyond the scope of
this paper.

The LAD estimators were used as starting values for computing the ICM
test statistics. Since the signs of the large median residuals will likely not
change, the minimization of the ICM objective function has been conducted
by adjusting the 10% smallest (in absolute value) residuals only, using the
downhill simplex method of and Nelder and Mead (1965) (see also Press et al.
1989, pp. 289-293), which do not require the use of derivatives, and after each
iteration round we have checked whether the signs of the other 90% residuals
have changed. Only one iteration round sufficed.

The integral of the ICM statistic has been computed by Monte Carlo simu-
lation, using 1000 random drawings from the uniform distribution on =, be-
cause the sample size is too large to compute this integral numerically by (23).

A more detailed description of this testing protocol will be given in section
2 of the appendix.

6.4. Median regression estimation and test results
The t-values of the LAD estimators are based on the assumption that the

error ¢ is independent of the explanatory variables?, as in Koenker and Bassett

2 This excludes heteroskedasticity of the errors. Admittedly, this assumption may not be realistic
for wage equations. If so, the t-values reported in Tables 1.A-3.A are biased. However, asymp-
totically the ICM test is not affected by heteroskedasticity. See Assumptions 2 and 4.
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Table 1.A. LAD estimation results for the standard Mincer type model

X estimates t-values

race —0.251165 —18.132
ed 0.093462 68.514
exper 0.076289 80.844
exper? —0.001274 —62.568
1 4.279231 208.134

Table 1.B. ICM estimation and test results for the standard Mincer type model

X c=1 c=5 c=10
race —0.251183 —0.251832 —0.251853
ed 0.093469 0.093711 0.093718
exper 0.076294 0.076492 0.076498
exper2 —0.001274 —0.001277 —0.001277
1 4.279546 4.290609 4.290952
ICM test 4.224736 27.54178 18.57165
Critical values 10%: 3.23 S5%: 4.26

Table 2.A. LAD estimation results for the quartic model

X estimates t-values
race —0.245609 —18.003
ed 0.095481 70.784
exper 0.166344 49.568
exper? —0.008562 —30.016
exper? 0.000201 23.086
exper* —0.000002 —20.445
1 4.005403 181.053

Table 2.B. ICM estimation and test results for the quartic model

X c=1 c=5 c=10

race —0.245609 —0.246033 —0.246020
ed 0.095481 0.095646 0.095641
exper 0.166344 0.166631 0.166622
exper? —0.008562 —0.008577 —0.008577
exper? 0.000201 0.000201 0.000201
exper? —0.000002 —0.000002 —0.000002
1 4.005398 4.012319 0.401210
ICM test 2.425816 11.26330 7.969391

Critical values 10%: 3.23 5%: 4.26
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Table 3.A. LAD estimation results for the Buchinsky type model

X estimates t-values
ed 0.137425 17.115
exper 0.086972 43.398
regne 0.046971 2.173
regmw —0.013488 —0.786
regw 0.042601 2.337
smsa 0.134946 9.895
race —0.267068 —3.566
parttime —0.934852 —69.697
exper? —0.001063 —48.122
ed? —0.000397 —1.516
ed*exper —0.001785 —16.719
regne*smsa 0.055559 2314
regmw*smsa 0.097281 4.795
regw*smsa 0.004530 0.212
race*ed 0.000753 0.149
race*exp 0.000678 0.648
race*parttime 0.142179 3473
1 3.788416 57.192
Table 3.B. ICM estimation and test results for the Buchinsky type model

X c=1 c=5 c=10

ed 0.137446 0.137841 0.138012
exper 0.086984 0.087234 0.087342
regne 0.046978 0.047114 0.047171
regmw —0.013490 —0.013529 —0.013545
regw 0.042607 0.042730 0.042782
smsa 0.134966 0.135356 0.135521
race —0.267107 —0.267876 —0.268206
parttime —0.934991 —0.937682 —0.938834
exper? —0.001063 —0.001066 —0.001067
ed? —0.000397 —0.000398 —0.000399
ed*exper —0.001785 —0.001791 —0.001793
regne*smsa 0.055567 0.055727 0.055796
regmw*smsa 0.097295 0.097575 0.097695
regw*smsa 0.004530 0.004543 0.004549
race¥ed 0.000753 0.000756 0.000756
race¥exp 0.000678 0.000680 0.000681
race*parttime 0.142110 0.142608 0.142784
1 3.788976 3.799885 3.804553
ICM test 1.981098 3.333470 2.292801
Critical values 10%: 3.23 5%: 4.26

(1978). The error density f(-) has been estimated by a kernel density estimator
with standard normal kernel and window width 4 = s-n~%2, where s is the
mean of the absolute values of the LAD residuals in deviation of their sample
mean. This scaling factor s makes the kernel density estimator location and

scale invariant.

The LAD estimation results are presented in Tables 1.A-3.A, and ICM
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estimation and test results are presented in Tables 1.B—3.B. First, observe that
the ICM estimators are virtually the same as the LAD estimators. We will
explain this in section 3 of the appendix. Next, observe that the ICM tests for
¢ = 1 do not reject the three models at the 5% significance level, and that the
ICM tests for ¢ = 5 and ¢ = 10 reject the median regressions in Tables 1.A—
2.A at the 5% significance level. The differences of the ICM test statistics for
¢=1,c=5and ¢ =10 in Tables 1.B-2.B indicate that the null hypothesis is
not true, despite the test results for ¢ = 1. Apparently, the value ¢ = 1 is too
close to zero [cf. (24)]. Only the Buchinsky type median regression in Table
3.A is accepted by the ICM test at the 10% significance level for ¢ = 1 and
¢ = 10, and at the 5% significance level for ¢ = 5.

These empirical illustrations clearly demonstrate the practical applicability
and usefulness of the ICM test for quantile regression models.

Appendix
1. Proof of Theorem 3

We can approximate the median regression model by a continuously dif-
ferentiable model, in various ways. For example, let for arbitrary small
e>0,

(7—0"x)/e
4 (0) = J lolexp(—02/2) do — 1
= (1 — exp[-0.5(y; — 07x;)* /&’ )u; (0), 25)

and £4(0,&) = (1/n) > AI )(Q)Wj(f). Then it is easy to verify from (2), (7)
and (25) that

2(0,€) = 29(0,9)| < Zlu] exp(=0.5(y; — 07x;)* /%)

< %Z exp(—0.5(y; — Hij)z/ez)W. (26)
J=1

It follows from Assumption 3 and Jennrich’s (1969) uniform law of large
numbers that for any fixed ¢ > 0,

0eB,e>c

sup  (1/n) 3" exp[-0.5(y, — 07)* /e
=

E(exp[—0.5(y; — 0™x1)? /%)) — 0 a.s., 27

Moreover,
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. 1
limsup  sup —Zexp(—O.S(y,—ﬁTX/)z/gz)

n—ow (e@,0<e<c

. 1< T.\2,2
< limsup sup — » exp(—0.5(y; — 0°x;)"/c
msup sup S xp( 030~ 07"

ZGXp —0.5(y; — 0"x,)*/c?)

< limsup sup
n—ow (e®

Elexp(=0.5(y; = 0"x1)*/¢?)]

+ sup Elexp(—0.5(y, — 07x)?/c?)]
0e®

= sup E[exp(—0.5(y, — 0x1)?/c?)] a.s
0O

Furthermore, it follows from Assumption 4 that

0 < E(exp[-0.5(y; — 0"x1)*/¢%]) < ev2rE[sup f(y|x)]
y

hence

lim sup E(exp[—0.5(y, — 07x)?/&]) =
el0 geo

28)

29

(30)

Combining (27) through (30), it follows that for arbitrary ¢ > 0 there exists

a number a > 0 such that

limsup sup  |Q(0) — 0¥ (0)| < ¢ a.s.

n—oo (eB,0<e¢<a

and similarly

sup  [0(0) - 0V(0)] <,

0e0,0<e<a

where

@%wszWa@Vm@»

@%wzjww%mm@mwma

@31

(32)

33)

Moreover, it follows from Jennrich’s (1968) uniform law of large numbers

that for fixed ¢ > 0,
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Q(8>(0) — Q(8>(0) a.s., uniformly on ©. (34)

Combining (31), (32) and (34), and letting ¢ | 0, Theorem 3 follows. Q.E.D.

2. The ICM test algorithm

Given model (1), the first thing we have to do is to select the variables to be
included in the vector X; = (X;(1),...,X;(m)) T of instruments. For example,
in the case of the Buchinsky type model in Table 3.B, X; consists of the
(m = 8) italic variables, i.e., the smallest set of variables such that the condi-
tional distribution of y; given Xx; is the same as the conditional distribution of
y;j given X;. Next, we have to standardize X;, as follows (see Bierens 1982, 1990
for the reason):

X j = (X, j(1),..., X, j(m)) T, where

o) %() = (1/m) S, %)
WU S 50 - () S %)

for i=1,...,m. Moreover, we have to transform X, ; by a bounded one-
to-one mapping @: R” — R”. We have chosen &((xi,... ,xm)T) =
(arctan(x), ..., arctan(x,))".

Denote for & € & = x| [—c,¢], with ¢ =1, 5 or 10,

Up,n, j(01,0) = dp j(01)u;(0) + (1 — dp, ;(601))u;(61) (35)

and z, ,(01,0,&) = (1/n) Z 1 Up,n, j (01, O)wy, (<), where wy, (<) is defined by
(22), u;(0) is defined by (2), and dy j(0)) is a dummy variable which takes the
value 1 if j belongs the set of the p% observations with the smallest value of
ly; — 0, x,| and zero if not. In the empirical applications we have chosen

p= 10
Let u be the unlform probability measure on Z=. Then the integral

QP(HI, = [|zp,n(61,0, &)|* du(&) can be approximated by
Ow, ,(01,0) Zzp, (601,0,8,)?, (36)
were &;,...,¢y are random drawings from the uniform distribution on =. In

the empirical application we have chosen N = 1000.

Note that, due to the boundedness of w, ;(£), (36) is a mean of bounded
random variables z, ,(01, 0, 63)2, conditional on the data and given the values
of ) and 6. This will boost the performance of the law of large numbers
on which this approximation relies. Moreover, it is not hard to verify that
for the weight function (22) and the uniform probability measure ¢ on & =

Xi”il [—C, C]’
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J Wi, i(E)wn, (&) du(&)

_ Yy sin(clarctan (%, (k) — arctan(X,, ;(k))])
- 11:[1 clarctan(x,, ;(k)) — arctan(x, ;(k))] 37

hence [w, ;( & du(é) =

Now given the 1n1t1a1 value 0, =0, ,p, minimize Oy p(01,0) to 0,
using the simplex method of Nelder and Mead (1965), which yields 0, =
argmin, Qy p(01,0). Since the objective function is piecewise constant, the
vertexes of the start-simplex should be chosen sufficiently far away from the
start point, say by line search in the principle directions up to the point where
the objective function becomes unequal to its value in 0;.

If u;(01) = u;(0) for d, ;(01) =0 then we are done: 0 ~ 0 = 0,, and the
simulated ICM test statistic becomes

F~nQy. ,(0,0), 38)

else we repeat the minimization procedure with 0; replace by 0.

It would be better to conduct this algorlthm on the basis of the exact inte-
gral Q (01,0), but this will involve m(n®> — n) /2 multiplications of different
pairs of (35) and the m factors of the product in (37), plus n squares of (35).
Since our sample size is n = 28155, the computation of the integral Q,(61,0)

will take therefore too long on a regular PC (The computation of each of the
three ICM test statistics (38) for the model in Table 3.B took about 8 hours on
a Pentium II PC, using EasyReg)

It is easy to Verlfy that in order to extend the ICM test to more general
quantile regressions, with P(y; — 04 x; < 0|x;) = g, we only need to redefine
u;(0) in (2) as

I(yj—Hij >0) —I(y; — 0" < 0)+2¢—1
uj(@): ’
2v/4q(1 = ¢q)

where the scaling involved guarantees that under the null hypothesis,
[u,(HO) ] =1, and start the minimization of (36) from the corresponding
quantile estimator.

3. Why are the LAD and ICM estimators close?

In order to explain why the LAD and ICM estimators in Tables 1-3 are so
close, suppose that the correct median regression model is y; = g(x;) +¢;, and
that ¢ is independent of x;, with distribution function F(-) satistying F(0) =
0.5. Moreover, let H(-) be the distribution function of x;. Since the LAD es-
timator is actually a method of moment estimator, namely the solution of the
moment conditions (1/7) >, u;(0)x; = 0, it converges a.s. to
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0. = arg{l)nin 1E[;(0)x]11* = arggnin IE[(1 = 2F (g(x;) — 07x;))])1”

= argfl)nin JJ(I —2F(g(x1) — 07 x1))(1 = 2F (g(x2) — 0"x2))

X Wl(xl,xz) dH(xl)dH(xz), (39)

where Wi(x1,x2) = x] x2, whereas the ICM estimator with weight function
w(ET®(x;)) converges to

0.. = argmin [ || Elu(0)w (&7 @5 )] i)

arg;nin JJ(I —2F(g(x1) — 07 x1))(1 = 2F(g(x2) — 07x2))

X WQ(XI,XQ) dH(xl)dH(xz), (40)

where Wi (x1,x2) = [w(ETD(x1))w(ETdD(x2)) du(é). Therefore, asymptoti-
cally the difference between the LAD estimator and the ICM estimator will
not be substantial if the misspecification is rather modest, because the objec-
tive functions (39) and (40) only differ with respect to the weight functions W
and W>.
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