Our Evolving Energy Mix

Insights Into <u>the</u> Central Element of Our Economic Engine

Jay Kalbas jaykalbas@ku.edu

A Perspective on Scale

Total

Wind

Solar

0 -

A Perspective on Scale

Completely Factual !

But <u>Not</u> Factually Complete !

Yearly U.S. wind and solar combined are equivalent to ~362 MMOEB

Equates to ~3.5 days of global oil consumption

... or 18 days of U.S. consumption

A Perspective on Scale

"Yellowtail" Floating Production Storage and Offloading Vessel Offshore Guyana

Or ...

The energy equal to 1 day of production from this vessel

... and there are 6 vessels in operation / being built right now!

A Global Perspective of Energy Demand

Global sector demand (million oil-equivalent barrels/day)

Vehicles (million)

Source: ExxonMobil outlook for Energy

A Global Perspective of Energy Demand

The University of Kansas

The Reality is that our appetite for energy is enormous! It is growing and it is evolving! Underscores the importance of **Energy Security**!

U.S. Yearly Energy Consumption

Estimated U.S. Energy Consumption (2021) ~ 100.3 Quadrillion BTU

National Electrical Energy Trends

- Total Energy Generation =
- Total Fossil Energy = 724,804 MW (61%)
- Total Renewable Energy = 348,474 MW (29%)
- Total Nuclear Energy = 95,773 MW (8%)

Data Source: U.S. Energy Information Administration

Fossil Fuel Electrical Energy Generation

- Combination of Coal, Natural Gas, and Petroleum
- >55% of electrical generation
- U.S. Coal generation dropped by 23% from 2021-2023:
- Operators have retired ~37 GW (or 17%) of coal fleet since 2021

Data Source: U.S. Energy Information Administration

Nuclear Electrical Generation

- Total Nuclear Energy = 95,773 MW (8%)
- Essentially flat since the Three-Mile Island accident in 1979

Data Source: U.S. Energy Information Administration

Hydroelectric Electrical Energy

- Total Hydroelectric Energy = 80,190 MW (7%)
- Difficult to grow
- Intensifies consumptive use of water

USA		
	Total MW	Percentage
Nuclear	95,773	8%
Coal	181,922	15%
Natural Gas	509,375	43%
Batteries	14,073	1%
Biomass	12,020	1%
Geothermal	2,674	0%
Hydroelectric	80,190	7%
Pumped	23,167	2%
Oil	33,506	3%
Solar	84,893	7%
Wind	145,532	12%
Other	3,150	0%
	1,186,275	

Data Source: U.S. Energy Information Administration

Solar Electrical Energy

Utility-Scale Generation Capacity, as of 4Q,2023

- Total Solar Energy = 84,890 MW (7%)
- Concentrated in the sun belt
- Mineral resource intensive

USA		
	Total MW	Percentage
Nuclear	95,773	8%
Coal	181,922	15%
Natural Gas	509,375	43%
Batteries	14,073	1%
Biomass	12,020	1%
Geothermal	2,674	0%
Hydroelectric	80,190	7%
Pumped	23,167	2%
Oil	33,506	3%
Solar	84,893	7%
Wind	145,532	12%
Other	3,150	0%
	1,186,275	

Data Source: U.S. Energy Information Administration

Wind Electrical Energy

Utility-Scale Generation Capacity, as of 4Q,2023

- Total Wind Energy = 145,532 MW (12%)
- Concentrated in the Midwest

USA		
	Total MW	Percentage
Nuclear	95,773	8%
Coal	181,922	15%
Natural Gas	509,375	43%
Batteries	14,073	1%
Biomass	12,020	1%
Geothermal	2,674	0%
Hydroelectric	80,190	7%
Pumped	23,167	2%
Oil	33,506	3%
Solar	84,893	7%
Wind	145,532	12%
Other	3,150	0%
	1,186,275	

Data Source: U.S. Energy Information Administration

Renewable Electrical Energy Generation

- Renewable power is a growth sector across the U.S.
- Highly regional trends in fuel source

USA		
	Total MW	Percentage
Nuclear	95,773	8%
Coal	181,922	15%
Natural Gas	509,375	43%
Batteries	14,073	1%
Biomass	12,020	1%
Geothermal	2,674	0%
Hydroelectric	80,190	7%
Pumped	23,167	2%
Oil	33,506	3%
Solar	84,893	7%
Wind	145,532	12%
Other	3,150	0%
	1,186,275	

Our energy mix is Complex. It is driven by **market demand** and (especially with renewable energy) **resource availability**

Underscores the impact of **regionality** and the importance of **Economic Security**!

Tradeoffs in the Energy Mix

- The Gov. of Guyana maintains a goal of limiting scope-1 greenhouse gas emissions from its oil and gas production
- The country wants to remain a carbon negative country
- Significant emissions restrictions imposed on the production joint ventures operating there

"Yellowtail" Floating Production Storage and Offloading Vessel Offshore Guyana U.S. CO₂ Emissions

Source: Energy Information Administration, April 2022; **Primary Contributors:** Kevin Nakolan, Michael Francis

Consumption vs. Production

Courtesy Scott Tinker, 2024 Sources: Global Carbon Project; World Bank; The Economist

In all sectors, the imperative to reduce greenhouse gas emissions is recognized

Underscores the importance of **Environmental Security**!

The Energy Mix – Drivers & Tradeoffs

Energy Security

Economic Security

Environmental Security

The Energy Mix – Drivers & Tradeoffs

The Energy Mix – Drivers & Tradeoffs

Reliable Affordable & Scalable Clean Environmental Economic Security Security **U.S. Electrical Power**

Energy Security

(million MWhr)

Data Source: U.S. Energy Information Administration

Let's Consider Just One Kind of New Load

Sector Growth in U.S. Power Demand (2022-2030)

power is at a scale not previously contemplated!

Source: Masanet et al. (2020), Cisco, IEA, Goldman Sachs Research

The Energy Transition Must Bring:

1. Affordable and reliable **dispatchable power** and **transportation fuels**

2. At a scale never before contemplated

3. While reducing GHG emissions

4. In a severely grid-constrained environment

Put Simply – The Energy Transition Must:

1. Add considerable (dispatchable & affordable) power

while

2. Reducing net emissions

Let's use Kansas as an example of "the art of the possible"

Regional Electric Generation – Wind and Solar

- Kansas' high sustained wind speeds and high solar irradiance have allowed it to has aggressively grow its renewable energy infrastructure
- Third nationally in wind-generated electricity

The University of Kansas

Metro Areas Demand Dispatchable Energy

Metro Areas Demand Dispatchable Energy

But we have world class resources on our doors step!

We have options!

Goal 1: Add Dispatchable, Affordable Power

Link Intermittent Power to Energy Storage & Transportation

 Excess & new electrical energy can be harnessed

- And used to generate hydrogen from water
- To make diverse energy and chemical commodities

Goal 1: Add Dispatchable, Affordable Power

Link Intermittent Power to Energy Storage & Transportation

Goal 2: Reduce Net Emissions – CCUS

#1 – Energy drives industry. No doubt about it.

#2 - Our appetite for energy is enormous and growing,

#3 – The energy mix is complex. It is driven by market demand and modulated by resource availability (especially in renewables),

#4 – Energy Transition, in reality, means development of:

- Affordable and reliable Power and Transportation Fuels
- That are dispatchable and (rapidly) scalable, and that
- Yield lower greenhouse gas emissions

Adding Up Our Conclusions

To add new advanced industries to Kansas' economy (e.g., biotech, advanced manufacturing, and data computation),

Kansas needs to not only be a player in energy portfolio growth,

It can and should be a national leader!

