
Paper 131-27

Self Serve Census Data for Neighborhoods and other Custom Aggregations:

A SAS/IntrNet Application
Larry Hoyle, Policy Research Institute, University of Kansas, Lawrence, KS

ABSTRACT
In the past, obtaining Census statistics for aggregates of Census
blocks was a somewhat tedious task, which required the involvement
of someone skilled in Census Geography and programming, or a
GIS package.
The Web application described in this paper allows users to define
and name their own collection of counties, census tracts, block
groups and blocks. They are then able to display standard Summary
File Profiles for the aggregated area. For example, the XYZ
Neighborhood Association might want Census statistics for the
neighborhood as a whole. Someone from the association could pick
the blocks comprising the neighborhood, save the selection as
“XYZ”, and then select which sets of tabulations to display. He or
she could return to the site later and select other tables to display for
“XYZ”.
This paper shows an example of defining a neighborhood and
generating tables. It also describes the SAS techniques used to
implement the application. It will also discuss design considerations
such as bandwidth, and accessibility. The paper is appropriate for
users with intermediate SAS skill levels.
The application uses SAS/IntrNet running on a Digital UNIX system.

INTRODUCTION
The Policy Research Institute, and its earlier incarnations, has been
helping to distribute tabulations of US Census data to the public in
our state for many years. For the 1990 Census, many inquires were
answerable with photocopies from Census Bureau printed reports or
microfiche. For more extensive information on a single area we used
SAS code written in-house and written by people at other State Data
Centers. The 29-page profile of tables from Summary Tape File 3a
(STF3a) developed at the California State Data Center was
particularly useful. This profile could be generated for any
geographic unit down to the tract level. In the mid 90s we generated
these profiles in Adobe Acrobat format (pdf) for all counties and
cities in the state and made them available on our Kansas Statistical
Abstract CDROM. Later we made all of these files available on the
Web.

One type of inquiry though, remained something of a problem.
Sometimes a neighborhood group, a parent teacher organization
from a school, or some other group without much money would
want aggregated statistics for their area. From our end this might
involve several hours of finding the corresponding Census
geographic units and then writing custom code to aggregate them
and then generate a report. The cost of this was often more than the
requestor was willing to pay.

For the 2000 Census we have developed a Web based solution that
allows people to define an area for themselves, and then generate an
aggregate profile for that area. The initial profile from Summary File
1 is generated using SAS code developed by volunteers from a
group of State Data Centers. The main adaptation needed to
generate a profile for an aggregate area was to sum cells in the SF1
file that were aggregable, and to set the other cells to missing.
Counts of people, for example can be aggregated, while median age
cannot. A further refinement was to print all values when the custom
area is a single geographic unit – e.g. a single block.

We wanted to make this facility as accessible as possible, so we

made it text based, with links to maps on the Census Bureau’s Web
site. The custom area can be defined by making selections starting
from the county level down, or by entering dimensions of a rectangle
surrounding a street address and then refining from a list of all the
blocks in that area.

OVERALL DESIGN
In order to allow someone to define an area and then return to the
site and produce tabulations of the area, a list of the geographic
units selected for the area is saved as a SAS dataset on the server.
Here, for example is the list for the Old West Lawrence
Neighborhood, in Lawrence, KS.

The file contains two variables – one, Geocode, in the form found in
the Census dataset, and the other formval in a form usable as a
parameter from an HTML form. In this example all units are from
state 20, county 045, and tract 0005.02. The first record is all of
block group 2. The rest of the records are blocks from block group
3.
An entry for the custom area is also made in a dataset containing
one record for each custom area. This dataset has these fields:

The typical custom area definition uses under 20k bytes on the
server.

formval GeoCode
G20045_0005X02_2 20045-0005.02-2
G20045_0005X02_3001 20045-0005.02-3001
G20045_0005X02_3002 20045-0005.02-3002
G20045_0005X02_3003 20045-0005.02-3003
G20045_0005X02_3004 20045-0005.02-3004
G20045_0005X02_3005 20045-0005.02-3005
G20045_0005X02_3006 20045-0005.02-3006
G20045_0005X02_3007 20045-0005.02-3007
G20045_0005X02_3008 20045-0005.02-3008
G20045_0005X02_3009 20045-0005.02-3009
G20045_0005X02_3010 20045-0005.02-3010
G20045_0005X02_3013 20045-0005.02-3013
G20045_0005X02_3014 20045-0005.02-3014
G20045_0005X02_3015 20045-0005.02-3015
G20045_0005X02_3016 20045-0005.02-3016

Field Contents
areaNum a unique number for the area
areapw a password for revising the area description
created the creation date of the area
creatorip the IP number from which the area was

created
customArea a name for the area
email the optional email address of the creator
keepdays the number of days to keep the definition

2

THE USER INTERFACE
The custom area home page (not
shown here) allows users to choose
between defining new areas,
displaying the geography of already
defined areas, displaying a profile of
Census data for the area, or
displaying a population pyramid for
the area.

DEFINING AN AREA – ADDRESS
LOOKUP

In some cases, it may be easiest to
describe an area starting from a
rectangle around a particular address.
Suppose we are looking for the
square mile around the Kansas City
SAS office. Entering the address
9401 Indian Creek returns the page
on the right.

This fuzzy search returned a list with
just 1 block. We pick it and also
specify that we want all blocks having
their “internal point” in a square with
sides .5 miles from the internal point
of this block. The list can be modified,
if needed, and then saved as a
custom area definition. Each
geographic unit is identified by its
Census block number as well as a list
of all the features (e.g. streets)
bordering it.

We’ll save this definition with the
name “KC SAS Square Mile”.

DEFINING AN AREA – TOP DOWN
An area can also be defined starting
from a list of all counties. If a county
is marked as “select part” then, on
update, the form will show all of the
tracts in the county. Tracts can be
expanded to show their block groups,
and block groups can be expanded to
show their blocks. At each level one
can select a unit, expand it, or leave it
out of the custom area.

The area definition is saved with a
name and a password. The password
allows the creator to later modify the
definition of the area.

Figure 1

Figure 2

3

INFORMATION ABOUT A
CUSTOM AREA
Once an area definition has
been saved, anyone can
generate an aggregate SF1
profile or a population pyramid
for the area. The SF1 profile
can be generated using a font
suitable for printing, or one
suitable for on-screen
viewing. A sample of the latter
is at the top of this page.

The full profile is 17 pages of
tables from the 2000 Census
Summary File 1. Aggregating
medians is a problem, so the
program sets all medians to
missing for any custom area
of more than one
geographical unit.

We could also choose to
display a table of population
by age and gender and a
population pyramid for the
aggregated area.

Figure 3

Figure 4

4

PREPARATION

THE GEOGRAPHIC SELECTION DATASET
This project required the preparation of a dataset (geoselect)
containing a record for each possible geographic unit – county, tract,
block-group, and block. For those units, these fields were extracted
from the SF1 file:

AreaLand land area
AreaName 90 character area name
AreaWatr water area
BG block group code
Block block code
County county code
GeoCode geographic code
HU100 number of housing units
IntPtLat latitude of an internal point
IntPtLon longitude of an internal point
Pop100 number of people
State state code
SumLev summary level (e.g. 140 is a tract)
Tract tract code
geo_id SF1 file record key
formval macro variable compatible geocode
desc unique list of bordering feature names

The field formval is GeoCode recoded as
'G'||translate(geoCode,'_X','-.') as formval

This is a form acceptable as a macro variable. The field desc
contains a unique list of all the feature names (e.g. streets)
surrounding the geographic unit. The latter field was created from
the Census Tiger file corresponding to the SF1 file and is used for
the “Description” column in the table in figure 2.

THE ADDRESS LOOKUP FILES
The address lookup facility required the creation of a file for each
county with the following fields:

HIaddL, HIaddR, LOaddL, LOaddR, (High and low ranges)
fedirp, fedirs, fename, fetype, (feature identifiers)
geocodeL, geocodeR (area on left and right)

This file has a record for each Tiger line segment associated with
each block in the county. Note that the ranges are high and low
rather than the beginning and ending numbers that appear in the
Tiger file. The feature identifiers include a name, a type, a prefix, and
a suffix.

IMPLEMENTATION

ADDRESS LOOKUP
Consider the address 123 S. MyStreet. The Census Tiger file might
include the “S.” in the feature name or might put it in the feature
prefix. This necessitates some sort of fuzzy match for address
lookup. The fuzzy match is also convenient for users. The
application uses this match:

where (((LOaddL <= &num) and (&num <=
HIaddL)) OR

((LOaddR <= &num) and (&num <=
HIaddR))) AND

(spedis(upcase(fename),"&street")<=25 OR

spedis("&street",upcase(fename))<=25 OR
upcase(fename)=*"&street") ;

Code like this determines which side of the street to use:
/* number even */

/*left even number even, use LEFT */
if mod(LOaddL,2)=0 AND mod(&num.,2)=0

then do;
geocode=geocodeL;

low=LOaddL;
high=HIaddL;

end;
/* right even number even, use RIGHT */

if mod(LOaddR,2)=0 AND mod(&num,2)=0
then do;

geocode=geocodeR;
low=LOaddR;
high=HIaddR;

end;

The GeoCode field can then be matched to the geoselect dataset.
The following code finds the units in the specified rectangle:

/* geographic units which are rectangle
centers */
create table centers as
select 1 as center,

min((IntPtLat+(&nsRadius./69.1)),
(IntPtLat-(&nsRadius./69.1))) as minLAt,
max((IntPtLat+(&nsRadius./69.1)),
(IntPtLat-(&nsRadius./69.1))) as maxLAt,
min(

(IntPtLon+(&ewRadius./(69.1*cos(IntPtLat*&rPe
rDeg.)))),

IntPtLon-
(&ewRadius./(69.1*cos(IntPtLat*&rPerDeg.))))
) as minLon,

max(
(IntPtLon+(&ewRadius./(69.1*cos(IntPtLat*&rPe
rDeg.)))),

(IntPtLon-
(&ewRadius./(69.1*cos(IntPtLat*&rPerDeg.))))
) as maxLon,

* from sf12000.geoselect
where formval in (select name from mvars

where upcase(value)='R');

create table rects as
select 1 as keep, g.*
from sf12000.geoselect as g, work.centers as

c
where g.IntPtLat>=c.minLat AND

g.IntPtLat<=c.maxLat AND
g.IntPtLon>=c.minLon AND
g.IntPtLon<=c.maxLon;

SELECTING AND EXPANDING AREAS
Once the blocks for the area around an address are located, or when
starting from the list of counties, a form like figure 2 allows the user
to select or expand areas. The HTML for the first row of that form
looks like:

<tr>
<td>
<input type="radio" name="G20091" value="K">

</td>
<td>
<input type="radio" name="G20091" value="S">

</td>
<td>
<input type="radio" name="G20091" value="D"

CHECKED >
</td>
<td>Johnson County
<A

href="http://ftp2.census.gov/plmap/pl_trt/st2
0_Kansas/c20091_Johnson/CT20091_001.pdf"

target="Census_map_window">
tract map

</td>
<td>The U.S. Census Bureau's
<A

href="http://ftp2.census.gov/plmap/pl_blk/st2

5

0_Kansas/c20091_Johnson/"
target="Census_map_window"> block map

directory
contains a list of maps, each of which shows

a piece of the county.
The index map for the county is named:

PB20091_000.pdf
</td>
</tr></tr>

In order to use radio buttons in the form, each possible geographic
unit needs to have its own name and the SAS program accepting
input from the form as macro variables needs to be able to identify
those names as being for geographic areas quickly. The trick here is
to make a rule that only geographic area radio buttons use a name
beginning with “G” in this form. The SAS program can easily find all
of those form variables with this query against the “sashelp.vmacro”
view of all macro variables:

proc sql;
create table mvars as
select name,value
from sashelp.vmacro
where scope='GLOBAL' and

upcase(substr(name,1,1))="G";

The radio buttons can have one of these values:

K - keep the area
S - subset the area
D - delete the area

Other values are used in hidden tags in forms sent back by the
program.
H - hide controls but display the area - previously subsetted
E - show the area for re-editing - drop selected
R - keep everything in a radius around the area the area

Values of “R” are sent by the address lookup form.

UNACCEPTABLE AREA NAMES?
We had some concern about the possibility that someone would
create an area with a name we didn’t want displaying in a drop down
box on our server. Consequently, each time a new area is created,
the SAS program sends an email with the area name to one of our
staff – just in case.

filename mymail email "pri@ku.edu"
subject="new custom area";

data _null_;
file mymail;

set areas.areaPWs;
where areaNum=&newAnum ;

put areaNum= / customArea= / created= /
keepdays= / creatorIP=/ email=;
run;

MODIFYING THE PROFILE CODE
The SF1 profile code, which is available on the State Data Center
Clearinghouse Web site (http://www.sdcbidc.iupui.edu/), produces
tables using pointer control in DATA steps. In order produce HTML
which prints reasonably to landscape pages we used the following
ODS code:

ods path work.template(update)
sashelp.tmplmst(read);

proc template;
define style Styles.myHtm;

parent = styles.default;

replace color_list
"Colors used in the default style" /
'fgB2' = cx0066AA
'fgB1' = cx004488
'fgA4' = cxAAFFAA
'bgA4' = cxFFFFFF
'bgA3' = cxFFFFFF
'fgA2' = cx0033AA
'bgA2' = cxFFFFFF
'fgA1' = cx000000
'bgA1' = cxFFFFFF
'fgA' = cx002288
'bgA' = cxFFFFFF;

replace colors
"Abstract colors used in the default

style" /
'headerfgemph' = color_list('fgA2')
'headerbgemph' = color_list('bgA2')
'headerfgstrong' = color_list('fgA2')
'headerbgstrong' = color_list('bgA2')
'headerfg' = color_list('fgA2')
'headerbg' = color_list('bgA2')
'datafgemph' = color_list('fgA1')
'databgemph' = color_list('bgA3')
'datafgstrong' = color_list('fgA1')
'databgstrong' = color_list('bgA3')
'datafg' = color_list('fgA1')
'databg' = color_list('bgA3')
'batchfg' = color_list('fgA1')
'batchbg' = color_list('bgA3')
'tableborder' = color_list('fgA1')
'tablebg' = color_list('bgA1')
'notefg' = color_list('fgA')
'notebg' = color_list('bgA')
'bylinefg' = color_list('fgA2')
'bylinebg' = color_list('bgA2')
'captionfg' = color_list('fgA1')
'captionbg' = color_list('bgA')
'proctitlefg' = color_list('fgA')
'proctitlebg' = color_list('bgA')
'titlefg' = color_list('fgA')
'titlebg' = color_list('bgA')
'systitlefg' = color_list('fgA')
'systitlebg' = color_list('bgA')
'Conentryfg' = color_list('fgA')
'Confolderfg' = color_list('fgA')
'Contitlefg' = color_list('fgA')
'link2' = color_list('fgB2')
'link1' = color_list('fgB1')
'contentfg' = color_list('fgA2')
'contentbg' = color_list('bgA2')
'docfg' = color_list('fgA')
'docbg' = color_list('bgA');

replace fonts
"Fonts used in my HTML style" /
'TitleFont2' = ("Arial, Helvetica,

Helv",4,Bold Italic)
'TitleFont' = ("Arial, Helvetica,

Helv",5,Bold Italic)
'StrongFont' = ("Arial, Helvetica,

Helv",4,Bold)
'EmphasisFont' = ("Arial, Helvetica,

Helv",3,Italic)
'FixedEmphasisFont' =

("Courier",&fontSize.,Italic)
'FixedStrongFont' =

("Courier",&fontSize.,Bold)
'FixedHeadingFont' =

6

("Courier",&fontSize.)
'BatchFixedFont' =

("Courier",&fontSize.)
'FixedFont' = ("Courier",&fontSize.)
'headingEmphasisFont' = ("Arial,

Helvetica, Helv",4,Bold Italic)
'headingFont' = ("Arial, Helvetica,

Helv",4,Bold)
'docFont' = ("Arial, Helvetica,

Helv",3);

replace Output from Container
"Abstract. Controls basic output

forms." /
font = fonts('FixedFont')
background = colors('tablebg')
rules = NONE
frame = void
cellpadding = .5pt
cellspacing = 0.25pt
bordercolor = colors('tableborder')
borderwidth = 1;

replace Batch from Output
"Controls batch mode output." /
font = fonts('BatchFixedFont')
cellheight=8.5pt
cellpadding = .5pt
cellspacing = 0.25pt
frame=void
rules = NONE
foreground = colors('batchfg')
background = colors('batchbg');

end;
run;

ods html file=_webout(NO_Bottom_Matter
title="Custom Area SF1 Profile &areaNum")
style=myHtm CSS ;
ods listing close;
ods noproctitle;

The macro variable fontsize is previously set from the form via the
following code:

fs=upcase(symget("fontSize"));
select (fs);

when('M') call
symput("fontSize","10.0pt");

when('L') call
symput("fontSize","14.0pt");

otherwise call
symput("fontSize","6.7pt");

end;

CLEANUP
Custom Area definitions are defined with a number of days to keep
the definition. A SAS program is scheduled to run daily (via a
crontab entry) to delete any expired entries. The deletion code looks
like:

create table dellist as
select "area"||trim(left(put(areanum,6.)))

as togo
from areas.areapws
where (created+(keepdays*86400))<datetime()

;
delete from areas.areapws
where (created+(keepdays*86400))<datetime()
;

title 'After Deletions';

proc sql;
select areanum,

customArea, created, keepdays
from areas.areapws

;
quit;

/* delete the individual files */
data _null_;
set dellist end=last;
length dlist $ 2000;
retain dlist " ";
dlist=trim(dlist)||" "||togo;

if last then do;
call symput("dlist",trim(dlist));
end;
run;

%put &dlist;

proc datasets library=areas;
delete &dlist.;
run;

ACKNOWLEDGMENTS
Larry Hoyle and Xanthippe Stevens did design and programming for
the custom area Web pages.
The team led by John Blodgett of the Missouri State Data Center
created the code for the SF1 profile. Credits for that code can be seen
at:
http://www.ku.edu/pri/ksdata/census/2000#sf1credits
John also created the SAS code to make SAS datasets out of the
files distributed by the Census Bureau.

CONTACT INFORMATION
You are welcome to contact the author at:

Larry Hoyle
Policy Research Institute, Univ. of Kansas
Blake Hall
1541 Lilac Lane suite 607
Lawrence, KS 66044-3177
LarryHoyle@ku.edu
http://www.ku.edu/pri

The application discussed in this paper can be found at:
http://www.ku.edu/pri/ksdata/census/2000/
An extended version of the paper can be found at:
http://www.ku.edu/pri/ksdata/sashttp/sugi27

	cpyrt131-27: SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

