
1

Choosing a Method for Connecting Java to the SAS System Across the Internet -
CGI, JDBC or Socket?

Larry Hoyle
Institute for Public Policy and Business Research

University of Kansas

The SAS system can communicate with Java

applets across the internet (or within an
intranet) in a number of ways. An applet can
emulate an HTML form and connect to a SAS
program via a CGI script. An applet can use the
Java Database Connectivity (JDBC) API to
connect to a SAS/SHARE*NET server. Applets
can also open sockets to SAS programs using
the SAS System's socket file access method.
This paper explores the strengths and
limitations of these methods and shows their
use in IPPBR's "Statistics Kansas" WWW
pages.

Java & the SAS System
Java is a programming language, based on
C++, with features which make it well suited for
use with the Internet. Java programs designed
to run under a World Wide Web browser are
called applets. Java applet clients can
communicate with a SAS System server in at
least three ways.

Common Gateway Interface (CGI)
First, an HTML form can invoke a remote SAS
program through a Common Gateway Interface
(CGI) script. The SAS program can set up for,
and return a pointer to a Java Applet. The
browser will then start the applet which may, in
turn, read additional data from the server. The
CGI component of the SAS IntrNet product1 will
also allow this approach to starting an applet.

An example, with source code, of launching a
Java applet from SAS CGI script program can
be found at:

http://www.ukans.edu/cwis/units/IPPBR/ksdata/
ksah/javamap.htm

1 This product did not have its final name when this
article went to press.

The CGI method has some disadvantages.
• Once the applet starts it cannot

communicate with the SAS program which
launched it.

• Unless you are using the CGI component of
the SAS IntrNet product, each time a
connection is opened the SAS system must
be loaded on the server, causing some
delay.

• Unless you are using the CGI component of
the SAS IntrNet product, the server system
may be vulnerable to overloading if a large
number of simultaneous hits are received -
each one starting a separate SAS session.

• The SAS server program must write
temporary files as part of the communication
process. These may require some
maintenance if automatic cleanup fails.

The method's advantages are:
• It relies on a standard protocol between the

HTML forms and the CGI script which is
managed by the server's http server.

• The SAS program can start the applet with
pointers to text, graphics, or other format
files.

• The client applet doesn't need a lot of
downloaded classes to deal with
communication.

SAS starts a Java applet via CGI

Browser

http server

SAS program

applet class file

data

shell script or Perl program

2

Tcp/ip Sockets
A second technique uses tcp/ip sockets
between a Java applet and a SAS program.
This could also involve an intermediary Perl or
C program on the server although an
intermediary is not necessary.

Disadvantages of this method include:
• Much code may have to be written on the

server end to support any complicated
interaction.

• The developer must design a
communication protocol.

• SAS Data steps are not designed to be
event driven procedures.

• The SAS socket access method does not
have an “accept” function or statement.
Data steps will not wait for a connection for
output - only for input. The work around is to
use a socket first for input to SAS and then
for output from SAS.

• A high hit rate may keep users from being
connected - the server is not multi-threaded.

Advantages include:
• The SAS server program can respond with

text, graphics, or other format files.
• The connection stays open and can be two

way. The applet may receive or post data as
a result of user actions.

• Response from the SAS system can be
quick - as no startup is involved.

• The server program is just one process.
Huge numbers of hits may have a more
manageable impact on the system if each
one does not start a process.

Java Database Connectivity (JDBC)
A third technique uses the JDBC interface to
communicate with a SAS/SHARE*NET server.
The SHARE server is a special SAS procedure
which allows multiple programs to have
simultaneous access to data sets and views. It
typically runs all the time. SHARE*NET is a
special license for that procedure which allows
non SAS software access to the server across
the network. The JDBC interface communicates
via SQL statements and tables.

As with the preceding techniques there are
disadvantages:
• Communication is limited to that which can

be represented in SQL statements and
tables.

• The client must download JDBC driver code
which can cause some delay.

• A high hit rate may keep users from being
connected - the server is not multi-threaded.

and advantages:
• The connection stays open and is two way.

The applet may send requests or data as a
result of user actions.

• The SAS/SHARE*NET server runs all the
time. There is no wait for the SAS system to
load and response can be brisk.

• The use of SQL queries greatly simplifies
the effort to develop an applet.

• The server program is just one process.
Huge numbers of hits may have a more
manageable impact on the system system if
each one does not start a process.

SAS connects to a Java applet with a socket

Java
Applet

as
Client

SAS
Program

as
Server

tcp/ip
socket

Java
Applet
with
JDBC
Driver

Manager

SAS connects to a Java applet via JDBC

SAS JDBC Driver

SAS/SHARE*NET
server

data

3

JdbcMap - an example
The applet screen shown in figure 1 illustrates
the advantage of open communication between
an applet and the SHARE*NET server. The
selection box at the upper left of the screen
contains a list generated by an SQL query
which allows a user to select a topic area - e.g.
climate. Each time the user selects a topic,
another SQL query to the remote server brings
back a list of variables to be shown in the
bottom box. Selecting a variable sends yet
another SQL query against a different data set.
The resultant SQL table can be displayed in
tabular form or as a map.

Once the applet is started, many tables and
maps can be displayed. While the CGI script
method could be used to implement this
interactivity, it would be awkward and slower -
especially for the small queries like getting the
list of variables. Here, the list of variables is also
always current since it’s not in an HTML form.

JDBC - getting started
Sun has developed a package of classes and
interfaces named “java.sql” to implement JDBC.
SAS Institute has developed drivers which
connect the java.sql objects to
SAS/SHARE*NET.

To use JDBC you must have the java.sql
classes on your client machine and the SAS
JDBC driver on the host, available to be
downloaded by the client. The SAS JDBC driver
comes with instructions for setting these up.
Java.sql will ship with future browsers.

The most important interface elements are:
• Connection - which allows opening a

connection to a database.
• Statement - which is used for executing a

SQL statement.
• ResultSet - each Statement is associated

with a ResultSet object which gives access
to the result of the SQL query.

figure 1

4

Using JDBC, some details
The applet shown in figure 1 uses a SQL query
to build the scrollable box at the top left (a List
Box object). This box contains a list of all the
unique subject areas for which there are data
available in our Kansas county database.The
applet is invoked as follows:

The applet must first establish a connection. It
does so with code that looks like:

The url string is retrieved from the parameter
specified in the applet tag. It begins with
“jdbc:sharenet” and then contains the address
and port on which the SHARE*NET server is
listening.

Once a connection has been established,
submitting a query is quite simple. The Java
statements below show how the subject list is
retrieved in the jdbcMap application.

An applet builds an SQL query statement as a
string. In this case the statement selects the
distinct values of the variable “subject” from the
data set “ksah.varlist”.
The applet then uses the method
connection.CreateStatement() to create a
statement object. That object’s
statement.executeQuery() method sends the

SQL statement to the remote SHARE*NET
server. This method returns the result of the
query in a special object called a ResultSet.
The ResultSet can be read sequentially by the
applet a row at a time. Information about the
ResultSet’s columns is available in an
associated ResultSetMetaData object.

The Java method in the following table shows
how an applet can go through a ResultSet. In
this case it returns a List object from the items
in one column. The ResultSet.next() method
moves the cursor to the next row of the
ResultSet. The ResultSet.getString(int I)
method returns the item in column I as a String
object.

For More Details
The GenericJDBC applet from SAS Institute
shows using the JDBC interface in a complete
application. It includes the use of threads to
allow the communication to procede
independently from the user interface. It is
included with the driver package and can be
found at:
http://www.sas.com/rnd/web/jdbc.html

The JdbcMap example is located at:
http://lark.cc.ukans.edu/~lhoyle/sasjdbc/varlist.html
your browser must have the java.sql classes
available to view it.

<applet code="jdbcMap.class" width=600 height=425>
<param name=title value="KSAH">
<param name=url
value="jdbc:sharenet://lark.cc.ukans.edu:10403">
<param name=columns value="3">
<param name=saslibrary value="ksah">
<param name=oneval value="ksah.oneval">
<param name=varlist value="ksah.varlist">
<param name=rows value="10">
<param name="select" value="select * from
ksah.varlist">
<param name=bounds value=dimejav.prn>
</applet>

url = getParameter("url");

connection = driver.connect(url, properties);

String Stmt =
 “select distinct subject from ksah.varlist”;
statement = connection.createStatement();
resultset = statement.executeQuery(Stmt);

// getList gets a list of the items in
//column cN from the ResultSet rS

 public List getList(ResultSet rS, int cN){
 List lst = new List(10,false);

 try{
 while(rS.next()){
 lst.addItem(rS.getString(cN));
 }
 } catch (SQLException e) {
 System.out.println("couldn't get column");
 }

 return lst;
}

5

Sockets
In many cases the limitation of JDBC to SQL
queries will not be a problem. There are
situations, though, where a more flexible
communication method may be desirable -
perhaps in combination with JDBC.

Imagine extending the sample application in
figure 1 to allow the selection of the state or a
combination of states. While the boundaries
could just be extracted from a national county
level file with an SQL query, the cartographic
projection for some counties might be
undesirable. Doing the projection on the client
in interpreted Java would also not be ideal.
Instead, the applet could open a socket to a
SAS program running on the server and pass it
the set of states desired. The SAS program
would run PROC GPROJECT on the extract
and then pass the boundaries back to the
applet.

clicks.java
The “clicks” applet is a simple example of a
Java applet which communicates with a SAS
program through the socket access method.
This applet, clicks.java, sends the x,y
coordinates of each Mousedown event to a
SAS server program and then reads the sum of
x and y back from the SAS program.

The clicks.java applet consists of some
definitions and initializations and two methods. -
mouseDown and paint.

The mouseDown method, which is called by the
browser when the mouse button is down, opens
a socket to a SAS server program, writes the x
& y coordinates of the mouse click, reads their
sum, causes the screen to be repainted, and
then closes the socket. All of the real work of
the applet is done in the mouseDown method.

The paint method just echoes x, y and their sum
along with the address of the remote server to
which the applet connects.

Clicks would be improved by multiple threads
separating socket I/O from user interface
handling - but then it wouldn’t all fit on a page.

clicks.java
/* clicks - L.Hoyle December 1996 - writes to a socket */
/* then reads from it. */

import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.UnknownHostException;
import java.awt.Graphics;
import java.awt.Event;
import java.io.DataInputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.io.IOException;

public class clicks extends java.applet.Applet {
String locHost;
String remHost = "lark.cc.ukans.edu";
String sasSays;
int port = 5050;
int lastX=1;
int lastY=1;
 /* ********************************** */
 /* A mousedown causes the socket to */
 /* open, writes an x,y pair and reads */
 /* their sum. */
 /* ********************************** */

public boolean mouseDown(Event evt, int x, int y){
 try{

 Socket mySock = new Socket(remHost,port);
 PrintStream psSock =
 new PrintStream(mySock.getOutputStream(),true);
 lastX=x;
 lastY=y;
 psSock.println(""+x+" "+y);
 DataInputStream DISServer =
 new DataInputStream(mySock.getInputStream());
 sasSays = DISServer.readLine();
 repaint();
 mySock.close();

 }catch (Exception e){
 System.out.println(e.toString());
 showStatus(e.toString());
 }
 return true;
} /* mouseDown */

 /* ********************************** */
 /* Paint echoes the x,y value and */
 /* their sum. */
 /* ********************************** */

public void paint(Graphics g) {
 g.drawString("Remote host is: "+remHost,10,10);
 g.drawString("Click in the box to send a value.",10,30);
 g.drawString("Last: x="+lastX+" y="+lastY,10,50);
 g.drawString("SAS responds: "+sasSays,10,70);
}
} /* class clicks */

6

Clicks.sas
The SAS server program, clicks.sas
archives the x,y data and refreshes
the clicks.gif file which contains a
histogram of all of the x coordinates
ever selected.

It begins with a section which
defines a libname and a filename
and sets graphics options.

The ongoing work of the server is
done in a looping macro named
serve. This section first starts a
socket server listening on port 5050.
Because the filename fromjava
statement contains the keyword
server, the program waits at the
input x y statement until a client
program connects to port 5050 of
the server machine.

The server then reads x and y. The
client program (clicks.java) must
begin its interaction with the server
by writing a record with two numeric
values separated by a space.

The clicks.sas program saves these
values to the data set named tcpip
and then writes their sum back to
the same socket connection from
which it read x and y.

The server program quits if the sum
of x and y is greater than 500. In
this example, the applet tag in the
HTML file presented to the public
would have the applet window sized
so that a user would not be able to
send a sum larger than 500.

An administrator would have an
HTML file with an applet window
sized to allow termination of the
server. A curious or mischievous
person, of course could modify a
copy of the HTML file and shut
down the server. This highlights the
limitation of having to implement
your own protocol for a socket
service.

/* clicks.sas - Larry Hoyle, IPPBR, Univ. of Kansas, Dec. 1996 */
/* a socket server which reads x and y */
/* from 1 record on port 5050 */
/* then writes the sum back to the same socket */
/* then generates a histogram of the x values */
/* ** */

libname sugi22 '/homea/lhoyle/sugi22';
filename xhist '/homea/lhoyle/public_html/sugi22/clicks.gif';

 /* ********************************** */
 /* the graphics options don't change */
 /* ********************************** */

goptions reset=(axis, legend, pattern, symbol, title, footnote)
 norotate hpos=0 vpos=0 htext= ftext= ctext=
 target= gaccess= gsfmode= ;
goptions device=imggif gsfmode=replace gsfname=xhist
 ctext=blue cback=ligr
 graphrc interpol=join;

title1 "Where did people click?";
title2 "From http://lark.cc.ukans.edu/~lhoyle/sugi22/clicks.htm";

pattern1 value=SOLID;
axis1 color=blue width=2.0;
axis2 color=blue width=2.0;
axis3 color=blue width=2.0;

 /* ********************************** */
 /* the macro determines how long */
 /* the server runs. */
 /* ********************************** */

%macro serve;
%DO I = 1 %TO 10;

 /* ********************************** */
 /* read and write from the socket */
 /* ********************************** */

filename fromjava socket ':5050' server reconn=0;

data tcpip;
 infile fromjava eov=v;
 input x y;
 put x= y=;
 output;
 file fromjava ;
 xsum=x+y;
 put xsum;
 if xsum < 500 then stop; /* stop ends this transaction */
 else abort return; /* abort stops the server */
run;

7

After collecting and echoing the x,y
transaction, the clicks.sas program
archives the x,y pair into a data set
named sugi22.xy.

It then uses PROC GCHART to
create a histogram of all the x
values ever entered into the archive
file. This graph is written to a GIF
file which is referenced in the HTML
file which launched the applet.

Considerations
The clicks.sas program does a
pretty good job of collecting x,y
clicks, but it’s not perfect. First, if the
applet sends clicks too fast, x,y
values will be ignored.
More serious problems exist. If the
program accessing clicks.sas sends
unexpected data it may generate an
error which stops the SAS server
program. If the applet disconnects
before the server sends the sum, an
error may also terminate the server.

clicks.sas (continued)
 /* ********************************** */
 /* archive data from the socket */
 /* ********************************** */

proc sql;
 insert into sugi22.xy
 select x,y from tcpip;
 /* ********************************** */
 /* recreate the histogram of x clicks */
 /* ********************************** */

proc gchart data=SUGI22.XY;
 vbar X /
 percent maxis=axis1 raxis=axis2
 width=6 patternid=midpoint
 type=FREQ
 ;
run;
quit;

%END;

%mend serve;

%serve

What is a tcp/ip socket?

A tcp/ip socket is a connection between two programs across a
network using the tcp/ip protocol, which allows each program to
treat the other as an input/output device.

One program operates as a server in that it waits for the other to
initiate a connection. The server listens for a connection on a
particular port. The machine on which the tcp/ip server
program is running may keep track of certain port numbers so
that other server programs may avoid them. These pre-assigned
ports are known as “well known ports”. On a UNIX system
these ports are listed in the file /etc/services. Other port numbers
are up for grabs.

Once the server accepts the connection from the client it may
either read or write to the socket. As currently implemented,
however, a SAS DATA step in server mode must read from the
socket before writing to it. If the DATA step contains a “put”
statement immediately following a “filename... server”, it will
generate an error stating that the connection was not present.

8

Conclusions

Each of the three methods discussed here has
its strengths and limitations. Fortunately, if no
one method suffices, it is possible to use more
than one of them in combination.

A CGI script in Perl, for example, could
generate and check a port number and pass it
and the form data to a SAS program. It could
then pass a reference to an applet back to the
browser with the port number included as a
parameter. This would allow several copies of
a SAS socket server to run simultaneously,
each using a different port.

A Java applet could pass SQL requests to a
SAS/SHARE*NET server and also connect to a
SAS program serving a socket.

SAS Institute has provided a useful compliment
of interface methods.

Trademarks
SAS, SAS/IntrNet,SAS/GRAPH,
SAS/SHARE*NET are registered trademarks of
SAS Institute Inc. in the USA and other
Countries. indicates USA registration.

Java is a trademark of Sun Microsystems Inc.

Resources and References
The best source for information on using SAS
with Java applets and with the Internet in
general are the SAS Institute World Wide Web
pages. These include:

SAS Institute Inc., SAS Institute Web Tools.
http://www.sas.com/rnd/web/intro.html.

SAS Institute Inc., Accessing SAS Data with
Java(tm) and JDBC Technologies
http://www.sas.com/rnd/web/jdbc.html

SAS Institute Inc., SAS Institute Web Tools --
SAS CGI
http://www.sas.com/rnd/web/sascgi.html

SAS Institute Inc., SAS Institute Web Tools --
FTP and SOCKET access Methods
http://www.sas.com/rnd/web/ftpaccess.html

Other resources include:

Friendly, Michael, Online Statistics
http://www.math.yorku.ca/SCS/Online/

Hoyle, Larry, Examples of Connecting SAS to
WWW
http://www.ukans.edu/cwis/units/IPPBR/ksdata/
ksdata.htm#ecsw

Hoyle, Larry, SAS Software and the WWW -
What Next?, SAS User Group International
Conference (SUGI 21), Chicago, March 1996.

Hoyle, Larry, More on using SAS with WWW
MidWest SAS Users Group Conference,
Cleveland, October 1995.

Hoyle Larry, Connecting SAS to the World
Wide Web - Forms Across the Internet
MidWest SAS Users Group Conference
(MWSUG94) Omaha, September 1994

Sun Microsystems Inc., JavaSoft Home Page
http://java.sun.com/

Sun Microsystems Inc., The JDBC(tm)
Database Access API
http://splash.javasoft.com/jdbc

Larry Hoyle
IPPBR, University of Kansas
607 Blake Hall
Lawrence, KS, 66045-2960
l-hoyle@ukans.edu
http://www.ukans.edu/cwis/units/IPPBR

