
1

Interfacing the SAS System with the World Wide Web
Larry Hoyle

Institute for Public Policy and Business Research, Univ. of Kansas

Participants in this workshop will learn:
• how to read data across the Internet using the

FTP and URL access methods,
• some HTML basics,
• how to write HTML from a data step,
• how to create World Wide Web (WWW)

compatible bitmap graphics (GIF files) using the
SAS system,

• and how to use the SAS system and CGI scripts
to create WWW pages on demand.

 We will also discuss other methods of using the
SAS system to serve WWW information, including
JDBC and htmSql.

The starting point for information on using SAS with
the Internet is:

Reading or writing Internet sources

FTP
The SAS system has access methods for reading
and writing from FTP sites. To point to the file
“readme” in the directory “/pub/ippbr/fdiv” at
“ftp2.cc.ukans.edu” logging in as user “anonymous”
with the password “guest” use the following filename
statement:

The ftp file can be read or written as its access
permissions permit.

URL
The URL access method can be used to read WWW
pages. Suppose you need current weather for the
ocean just off San Diego. The National Weather
Service in Tallahassee, Florida maintains a page
with current weather buoy data from the National
Data Buoy Center. Buoy number 46045 is off the
coast from San Diego. To access data from it, use
the following SAS statement (note the “:80”).

The SAS code below reads the page and strips out
the recent observations.

Some HTML basics

Here are a few places to start to learn to create
World Wide Web (WWW) pages. There are, of
course many other sources - both on the Web and in
print.

data b;
infile buoy;
keep dt tempair winddir windsp pressure
 tempsea waveht waveprd;
length slash dec $ 1;
input @3 slash char$1. @10 dec char$1.@;
if (slash eq '/' and dec eq '.') then do;
 input @1 utcday 2.
 @4 utchour 2.
 @7 tempair 5.
 @24 winddir 3.
 @29 windsp 3.
 @46 pressure 6.
 @58 tempsea 5.
 @64 waveht 4.
 @69 waveprd 3. ;

 curmonth=month(date());
 curyear=year(date());
 dt=mdy(curmonth,utcday,curyear)*24*3600
 +utchour*3600;
 format dt datetime12. ;
 output;
end;
run;

SAS Institute WebTools
 http://www.sas.com/rnd/web/intro.html

filename rm ftp ‘readme’ cd=‘/pub/ippbr/fdiv’
user=‘anonymous’ pass=‘guest’
host=‘ftp2.cc.ukans.edu’;

filename buoy URL
 ‘http://www.met.fsu.edu:80/nws/cgi-bin/buoy.cgi?46045’;

A Beginner’s Guide to HTML
http://www.ncsa.uiuc.edu/General/
 Internet/WWW/HTMLPrimer.html

A Beginner's Guide to URLs
http://www.ie.cuhk.hk/mirror/
 url-primer.html

An Instantaneous Introduction to CGI Scripts and
HTML Forms

http://www.cc.ukans.edu/info/forms/
 forms-intro.html

2

WWW pages are written using Hypertext Markup
Language (HTML). HTML files are simply text with
embedded formatting codes called tags. The tags
for a minimal HTML file are shown below.

Depending on the browser, this file would display as:

Some tags like “<title>“ are paired with the ending
tag containing a “/”, like “</title>“. Other tags may
not need a corresponding ending tag - like the
paragraph tag “<p>“, or the line break “
“.

One useful, although not elegant, pair of tags is the
“<pre>...</pre>“ construct. All text between these
two tags will not be justified. These tags are useful
for wrapping tabular material which cannot be
recoded with HTML tags such as the output of a
SAS Proc.

SAS Institute is developing several HTML formatting
tools, including an HTML Output Formatter, an
HTML Data set Formatter, and an HTML Tabulate
Formatter.

For information on these new tools see:

Writing HTML from a SAS program
The example below outputs HTML tags from DATA
steps and wraps the output of a Proc in “<pre>“
tags. SAS macros could make this less tedious.

When viewed in a browser, the output would look
like the table at the bottom of this page. The SAS
Institute Web Tools page points to a number of tools
for making nicer looking HTML output. Some of
these tools are from SAS Institute and some from
SAS users.

filename myhtml
'c:\ddrive\sugi\sugi22\handson\means.htm';
options ls=64 nodate pageno=1;

data _null_;
file myhtml ;
put '<html>';
put '<head>';
put '<title>HTML from SAS</title>';
put '</head>';
put '<body>';
put '<pre>';
 /* redirect PROC output to the HTML file */
 proc printto print=myhtml;
title 'Means from the sasuser.class dataset';

proc means data=sasuser.class mean;
var weight height;
class sex;

 proc printto;

data _null_;
file myhtml mod;
put '</pre>';
put '</body>';
put '</html>';
run;

<html>
<head>
<title>A minimal HTML file </title>
</head>
<body>
<h1>An optional heading</h1>
This is a paragraph.
It will be justified
until the following tag.<p>
This is the second paragraph.
</body>
</html>

An optional heading

This is a paragraph. It will be justified until the
following tag.

This is the second paragraph.

TITLE:A minimal HTML file

Means from the sasuser.class dataset 1

 SEX N Obs Variable Label Mean
 --
 F 9 WEIGHT Weight in pounds 90.1111111
 HEIGHT Height in inches 60.5888889

 M 10 WEIGHT Weight in pounds 108.9500000
 HEIGHT Height in inches 63.9100000
 --

SAS Institute Web Tools - Html Formatting Tools
http://www.sas.com/rnd/web/htmlgen.html

3

HTML tables
The HTML for a simple table might look like:

and render as:

The “<tr> tag starts a row. The “<th>“ and :<td> tags
start cells.

HTML forms
HTML has the capability of defining a form which will
be used by the browser to enter data. The form tag
has an action parameter which specifies the WWW
address of the Common Gateway Interface (CGI)
script which will process the form. The form tag also
has a method parameter which specifies the
protocol by which the CGI script expects the data.
POST is the preferred method in most cases.

The HTML below sets up a form which has a
scrolling select box showing the words “one” and
“two”. The former is selected by default. The form
also has an input box with the default value of 3
entered. (See the 8th page of this paper for a picture
of a form displayed in a browser).

When “two” is chosen from the select box the
browser will prepare “x=2” to be sent to the CGI
script. Entering a 4 in the text box will prepare the
message “y=4”. The parameter “p=hello” will always
be sent but not appear on the screen since it
appears in a hidden field.

Hidden fields are useful for specifying values unique
to the form like which SAS program the CGI script
should run. They can also be used to save the state

of a sequence of interactions - as in a sequence of
drill down selections.

The stream of parameter data is sent to the CGI
script when the button created by the submit field is
selected.

Creating a GIF or JPEG file from SAS

The SAS system has a graphics driver “IMGGIF”
which will write GIF format files, and a driver
IMGJPEG which creates JPEG files. PROC
GDEVICE can be used to create copies of these
drivers which produce files of different sizes. The
code below will create a new driver named “gif320”
which will produce images at 320 by 240 pixels.

The sample below produces a GIF file of the first
GTESTIT screen.

If this GIF file was named “test.gif” and located in
the directory “mypics” in the http server directory of
the machine “fake.foo”, the HTML tag:

would cause it to be displayed inside the WWW
page.

Animated GIF

SAS 6.12 includes a driver -GIFANIM - for creating
animated GIF files. Documentation and examples
can be found at:

<table border>
<tr>
<th>my table<td align=right>col 2<td align=right>col 3
<tr>
<th>row heading<td align=right>1.1<td align=right>3.3
<tr>
<th>another row<td align=right>4.4<td align=right>5.5
</table>

my table col 2 col 3
row heading 1.1 3.3
another row 4.4 5.5

<FORM ACTION=“http://foo.bar/foo.pl” METHOD=“POST”>
<SELECT NAME=“x” MULTIPLE>
 <OPTION VALUE=“1” SELECTED>one
 <OPTION VALUE=“2”>two
</SELECT>
<INPUT TYPE="HIDDEN" NAME="P" VALUE="hello">
<INPUT TYPE=“TEXT” NAME=“y” VALUE=“3”>
<INPUT TYPE=“SUBMIT” VALUE=“send x,y to foo”>
</FORM>

libname gdevice0 "c:\apps\sas\gdevice0";
goptions reset=all;
proc gdevice noprompt nofs
 c=gdevice0.devices;
 copy imggif from=sashelp.devices
 newname=gif320 ;
 modify gif320 xpixels=320 ypixels=240
 xmax=3.2in ymax=2.4in;
run;

filename gifout 'handson\test.gif';
goptions device= gif320
 gsfmode=replace
 gsfname=gifout ;
proc gtestit pic=1;
run;

SAS Institute Web Tools -- GIFANIM Device Driver
http://www.sas.com/rnd/web/GifAnim.html

4

Accessing SAS through CGI scripts

The figure to the right shows the sequence of events
involved when a user opens an HTML form which
uses the SAS system as a CGI server using a user-
written intermediary program.

There are four programs shown in the figure:
• The browser (e.g. Netscape’s) running on the

client system.
• The http server program or daemon (also known

as the Web server program) running
continuously on the server.

• The CGI script, an intermediary program
launched on the server system by the http
server program. This is typically a UNIX shell
script, a C program, or a Perl script.

• The SAS program.

These four programs are duplicated in the figure to
simplify the drawing of the links among them. There
is only one instance of each for a given transaction.

The browser initiates the interaction by sending the
parameters selected in a form through the http
server to the CGI script. The CGI script receives
these parameters via a combination of environment
variables and the standard input file (stdin).

The CGI script launches a SAS program. The script
can send information to the SAS program through a
number of mechanisms. It can:
• Pass on the standard input file (except in the

Windows environment).
• Define environment variables.
• Write a sequence of %let statements at the

beginning of the SAS program.
• Write a named file.
• Open a socket to a running SAS Program (not

discussed here).
• Communicate via OLE with a running SAS

program in the Windows environment (not
discussed here).

• Send a SQL query to a SAS/SHARE*NET
server using the SAS SQL library for C (not
discussed here).

The SAS program can, in turn, write a named file or
write to standard output. The latter is passed on by
the http server program to the browser across the
Internet. The former can be passed on by the CGI
script program, with or without further processing.

Finally, the browser can fetch a file directly from the
server if it has been passed a reference to it in the
HTML sent back through the http server program.

Additional information about using SAS with CGI
scripts is available on the SAS Institute page at:

Running the SAS System From a CGI Script
 http://www.sas.com/rnd/web/sascgi.html

Browser

HTML form

http
server

software

shell script,
Perl, or

C program

envt varsstandard in

SAS
program

temp
files

http
server

software

Internet

Internet

Browser

displays
results

CLIENT SERVER

std out

envt varsstd in%let‘s

shell script,
Perl, or

C program

temp
files

std out

browser fetch

temp
files

Internet

5

CGI script to SAS and back - an example
Minimal.pl is an example of a Perl script used as an
intermediary between an http server and a SAS
program. It has several design constraints:
• brevity,
• ease of modification,
• compatibility with UNIX and Windows,
• integrating the HTML form with the script which

serves it,
• compatibility with the CGI component of the

SAS/IntrNet product (more on this later).

Only the first and last sections (part 1 and part 4) of
minimal.pl need to be modified to adapt it to a
different form

The first section of minimal.pl defines variables
which point to the files and directories needed by the
program. The variables which need definitions are:

• $tempdir - the directory containing the
temporary files used by minimal.pl

• $formtitle - the title used in the form that
minimal.pl returns when there are no input data

• $scriptloc - the URL (web address) of minimal.pl

• $sasprogloc - the location of the SAS program
file to include in the SAS program to be run by
minimal.pl

• $sasexe - the location of the SAS system
executable file

• $sasconfig - the location of config.sas

• $cgilib_loc - the location of the program cgi-lib.pl

Minimal.pl calls freeware subroutines from the
package cgi-lib.pl by Steven E. Brenner. This
package has routines which parse the input
parameters from the http server, split apart multiple
selection parameters, send back error messages to
the browser and so on. The last line of the part 1
listing links in that package.

The next two sections of minimal.pl should not need
to be changed to handle different forms. Part 2 uses
&ReadParse from cgi-lib.pl to parse input from the
http server and put it into an associative array called
%in. If there is no input &ReadParse returns false
and subroutine &sendform is called to send back the
HTML form.

minimal.pl - (part 1)
#!/usr/local/bin/perl
#
minimal cgi program Larry Hoyle - December 1996
#

srand();
$rnum = int(rand(99999));

#---
The variables in this box point to necessary files, etc.
Set them to the appropriate values.
#---#
 # temp directory #
$tempdir = "c:\\p158\\"; #

#
 # Title of returned HTML #
$formtitle = "CGI - SAS"; #

#
 # This script #
$scriptloc = "http://lhoyle.ippbr.ukans.edu/cgi/minimal.pl"; #

#
 # The SAS program to run #
$sasprogloc = "c:\\fnord\\cgi\\minimal.sas"; #

#
 # Location of SAS itself #
$sasexe = 'X:\\APPS\\SAS612\\SAS\\SAS.EXE'; #

#
 # Location of config.sas #
$sasconfig = 'c:\\apps\\sas612\\CONFIG.SAS'; #

#
 #location of cgi-lib.pl #
$cgilib_loc = "/apps/perl5/lib/cgi-lib.pl"; #
#---#

 # don't change these
$sasfile = "$tempdir"."cgi$rnum.sas";
$saslog = "$tempdir".".cgi$rnum.log";
$saslist = "$tempdir"."cgi$rnum.lst";
$webout = "$tempdir"."cgi$rnum.web";

 # uses cgi-lib.pl to parse the form parameters
 # cgi-lib.pl Copyright (c) 1996 Steven E. Brenner
 # For more information, see:
 # http://www.bio.cam.ac.uk/cgi-lib/

require ($cgilib_loc);

minimal.pl (part 2)

Try to parse input, if none - send a form

 # HtmlTop is from cgi-lib.pl
$BeginHtml = &HtmlTop($formtitle);

if (!&ReadParse) { # ReadParse is from cgi-lib.pl
 &sendform;
 exit;
}

6

Part 3 uses the associative array %in which was
created by &ReadParse to write a sequence of SAS
%let statements defining the parameter data as
macro variables. It also writes a filename statement
defining _webout. It then %includes the external
SAS program and runs SAS on the combined file.
When the SAS program is done _webout is sent
back to the browser and temporary files deleted.

minimal.pl (part 3)

Write the SAS program file and forward its output.
Set up %let statements consistent with the CGI component
of SAS/IntrNet. Define filename _webout.
The file pointed to by $sasfile will get the complete SAS program,
the preface written by this program and the external SAS program.

if(open (SASPROGFILE, "> $sasfile")){
 foreach $varname (sort keys(%in)){
 @valarray = &SplitParam($in{$varname}); # SplitParam is from cgi-lib.pl, makes an array of the multiples
 $valarraylen = @valarray;
 # Every PARAM gets PARAM0
 print SASPROGFILE ("%let $varname"."0 =$valarraylen; \n ");
 # define PARAM as macro var.
 print SASPROGFILE ("%let $varname=$valarray[0]; \n ");
 # multiple selects handled here
 if($valarraylen>1){
 for($ix=0; $ix<$valarraylen; $ix++){ # define multiple selects
 $ixplus = $ix + 1; # as PARAMi for i=1 to howmany
 print SASPROGFILE ("%let $varname$ixplus=$valarray[$ix]; \n ");
 }
 }
 }
 # define filename _webout
 print SASPROGFILE "filename _webout \"$webout\";\n ";
 # include in the SAS file
 print SASPROGFILE "%include \"$sasprogloc\";\n ";
 close SASPROGFILE;
 }else {
 cgidie("could not find SAS file: $sasfile");
}
 # run the SAS program
system("$sasexe -CONFIG $sasconfig -sysin $sasfile -log $saslog -print $saslist");
 # forward the SAS program's output
if(open (SASOUTFILE, "$webout")){
 binmode(SASOUTFILE); # In case there are graphics, explicitly specify binary mode for WIN32
 $nread = read(SASOUTFILE,$chunk,1024);
 while ($chunk ne ""){
 print ($chunk);
 $nread = read(SASOUTFILE,$chunk,5000);
 }
 close SASOUTFILE;
} else {
 cgidie("ERROR: unable to open the SAS output file");
}
unlink ("$saslog"); #clean up temp files
unlink ("$sasfile");
unlink ("$webout");
exit;

%let greet0 =2; sample contents of $sasfile
%let greet=Howdy;
%let greet1=Howdy;
%let greet2=Bonjour;
%let number0 =1;
%let number=2;
%let to0 =1;
%let to=Folks;
filename _webout "c:\p158\cgi19674.web";
%include "c:\fnord\cgi\minimal.sas";

7

If minimal.pl is invoked with no parameter data as
input, it will send back an HTML form using the
subroutine &sendform. The listing in part 4 shows
that subroutine.

The HTML form in this section will need to be
modified by the user. The SAS program which
processes it will also need to be changed.

The &sendform routine first sends back a response
header which is Content-type:text/html\n\n
(“\n” is a line ending), and should not be changed.

All of the HTML for the form document is found
between the markers <<HTML_FORM and
HTML_FORM and is typed just as if it were in a file by
itself with the exception that the action parameter of
the form tag contains $scriptloc. This is a Perl
variable name which will be replaced by the string
entered for it at the top of the program. It contains
the URL of minimal.pl.

The form in this example defines 3 parameters:
• greet - in the first select box can take on multiple

values.
• to - in the second select box can only have a

single value.
• number - in a text box allows a user to enter any

value

Having the form as part of the CGI script program
has potential advantages besides housekeeping
ones. The script could run a SAS program or use
the SAS SQL Library for C to send an SQL query to
a SAS/SHARE*NET server. Data from this external
procedure could be used to generate a form. A
modified version of this Perl script could also handle
data validation by sending back a form with values
from the previous submission and error messages.

Building a form from a query to a SAS program
could keep it current automatically. For example a
SELECT box could be populated with a current list
of parts from a database or the current years in a
file.

Multiple occurrences
The trickiest part of handling form parameters in
SAS is what to do with multiple occurrences of
parameters like greet. If the user, for example,
selects “Kansan”1 and “French”, the Perl script will
receive greet=Howdy&greet=Bonjour.

1 Minimal.sas and the form with it are really a
“Hello World” application. Translated into Kansan that’s
“Howdy Folks”.

The CGI component of the SAS/IntrNet product
would handle the preceding multiple occurrences by
defining the following sequence.

%let greet=Howdy;
%let greet0=2;
%let greet1=Howdy;
%let greet2=Bonjour;

The macro variable corresponding to the parameter
name gets the first value received. Then a “0” is
appended to the parameter name and it is assigned
the number of multiple occurrences. Finally each
occurrence appears as PARAMj where j is a
sequential counter starting with 1. Minimal.pl adopts
this approach to multiple occurrences.

minimal.pl (part 4)

Send back a form
Customize this section for your application.
Form variable names should be short enough to allow appending
at least one digit - more if a multiple select variable.
The variable names with appended digits must meet SAS naming
rules for macro variable names.

sub sendform {
print "Content-type:text/html\n\n";

print ($BeginHtml);
print <<HTML_FORM;
<HR>
<FORM ACTION="$scriptloc" method="POST">
Send a greeting

<SELECT NAME="greet" multiple >
 <OPTION VALUE="Hello">Formal
 <OPTION VALUE="Hi">Informal
 <OPTION VALUE="Howdy" SELECTED>Kansan
 <OPTION VALUE="Bonjour" >French
 </SELECT>

To the planet:

<SELECT NAME="to" >
 <OPTION VALUE="World">World
 <OPTION VALUE="Earth">Earth
 <OPTION VALUE="Folks" SELECTED>Folks
 <OPTION VALUE="Monde" >Monde
 </SELECT>

How many greetings do you want?

 <input type="text" name="number" value="2">
<HR>
<INPUT TYPE="submit" VALUE="Send Greeting">
</FORM>
</BODY>
</HTML>
HTML_FORM

} # end sendform
exit;

8

The included SAS Program - minimal.sas
Minimal.sas is the SAS program which is included
into the SAS program submitted by minimal.pl. The
first thing it must write to _webout is a header like:
put 'Content-type:text/html'/;
The trailing “/” is important. If the header is incorrect
the browser will not be able to display the return
page.

Minimalg.sas at the lower right returns a GIF file. It
first sends the header (Note the two line feeds - 0A):
'Content-type:image/gif' '0A0A'x

Macros
This SAS program contains a macro %macro mini
which is necessary to process the multiple
occurrences of the variable greet. If the form has no
multiple occurrence variables, a macro may not be
necessary.

/* minimalg.sas returns a GIF file */
goptions device=gif260 gsfmode=append
 gsfname=_webout
 gprolog = ‘Content-type:image/gif’ ‘0A0A ’x;

proc gtestit pic=1;
run;

/*minimal.sas L. Hoyle December 1996 */
/* a sample SAS program to be used with minimal.pl */
/* the Perl program will append this file to a sequence of */
/* %let statements which define each form variable as a macro
variable */
options MPRINT;

%macro mini ;
data _null_;
file _webout;

put 'Content-type:text/html'/;
put '<HTML>';
put '<HEAD>';
put '<TITLE>';
put 'A Minimal CGI - SAS application - SAS Output';
put '</TITLE>';
put '</HEAD>';
put '<BODY>';
put '<H1>';
put ‘SAS Output';
put '</H1>';

put "there were &greet0 different greeting(s)";
%IF &greet0 eq 1 %THEN
 %DO; /* only one greeting selected */
 put "
greet=&greet";
 %END;
%ELSE /* multiple greetings */
 %DO i=1 %TO &greet0;
 put "
greet&i=&&greet&i";
 %END;
put "
to=&to";
%DO n=1 %TO &number;
 put "
&greet &to";
%END;

put '</BODY>';
put '</HTML>';

run;
%mend mini;
%mini

9

The CGI component of the SAS/IntrNet product
As this paper is going to press there is a new
product from SAS Institute undergoing alpha testing.
The CGI component of the SAS/IntrNet product will
simplify the construction of WWW form to SAS
program links.

The biggest difference comes in the introduction of
the SAS application server. With the CGI method
used by minimal.pl, each SAS program was run as a
separate session. This can involve a noticeable
startup time in some environments - although it may
not be any problem in other environments.

With the application server, each SAS program may
run within the one server. This avoids startup time. It
also could protect your server from a sudden startup
of hundreds or thousands of SAS jobs if you get
listed in “What’s cool”. On the other hand if there are
not enough application servers running, client
applications might have to wait under heavy loads.

To write applications which use the CGI component
of the SAS/IntrNet product you would write an HTML
form with two new tags using the special variables
_program and _service. The first declares the SAS
program to be run:
<INPUT TYPE="HIDDEN" NAME="_program"
VALUE="sample.hello.sas">
The second declares which application server it is
to run on. These servers might be on different
machines. The SAS Institute written CGI program,
the dispatcher, handles all communication between
the browser and the application server. The
following would give a choice between the servers
“pickle” and “relish”:
<SELECT NAME="_service">
 <OPTION VALUE="pickle" SELECTED> Default
 <OPTION VALUE="relish" SELECTED> Default
</SELECT>

The SAS applet would look a lot like minimal.sas. It
would write HTML output to _webout and graphics
output to _grphout. It would have macro variables
defined the same as did minimal.sas, including the
treatment of multiple selections with the exception
that minimal.pl will always define a PARAM0 for
PARAM. With the new product, it may not be
defined if only a single selection is made.

The following is a sample SAS applet which
corresponds to minimalg.sas on the preceding page.

In general the CGI component of the SAS/IntrNet
product simplifies the creation of SAS-CGI
applications. It will also offer very useful debugging
and security features

htmSQL
Another new component of the SAS/IntrNet product
currently available in beta test form, is htmSQL.
htmSQL uses CGI as its communication method but
is quite different from the other CGI tools discussed
here so far.

With htmSQL an author embeds special tags in an
HTML document which describe an SQL query (or
update in future versions). The SAS Institute
supplied CGI server program interprets those tags
and submits the SQL query to a SAS/SHARE*NET
server. It then formats the results of the query as
described by the special tags and sends back the
HTML with the embedded results of the query.goptions gsfname=_grphout gsfmode=replace dev=gif733

 gprolog='Content-type: image/gif' '0A0A'x ;

proc gtestit pic=1;
 run;

Browser

HTML form

http
server

software

dispatcher

CLIENT SERVER

Browser

HTML form

Some SAS
Application

Server
temp
files

browser fetch

SAS
applet

dispatcher

%let’s

_grphout

_webout

config
file

internet

internet

internet

10

No SAS program is launched so queries can be
quick. Results are, however, limited to those which
can be generated by an SQL query.
The two pairs of principal tags for htmSQL are:
{sql}...{/sql} and
{eachrow}...{/eachrow}
The {sql} tag describes the sql query. The {eachrow}
tag describes the layout of each row of the result of
the query.

Suppose the weather data on the first page of this
paper were available to a SHARE*NET server in the
data set weather.buoys. The following would retrieve
an HTML table of the air and sea temperatures.

Further information on htmSQL can be found at:

JDBC
Another important method for accessing SAS
through the Internet is Java Database Connectivity
(JDBC). JDBC allows a Java applet embedded in a
WWW page to submit SQL queries to a
SAS/SHARE*NET server.

More information about JDBC appears in the paper
Choosing a Method for Connecting Java to the
SAS System Across the Internet -
CGI, JDBC or Socket?

Acknowledgments
Thanks to the SAS Institute Web Tools
Development Group for information on new
components of the SAS/IntrNet product (and for the
components too).

SAS, htmSQL SAS/IntrNet, SAS/SHARE*NET are
registered trademarks or trademarks of SAS
Institute Inc. in the USA and other Countries.
 indicates USA registration.

Java is a trademark of Sun Microsystems Inc.
Netscape is a trademark of Netscape
Communications Corporation.

Resources and References
The best source for information on using SAS with
the Internet are the SAS Institute World Wide Web
pages. The home page is:

SAS Institute Inc., SAS Institute Web Tools.
http://www.sas.com/rnd/web/intro.html.

Other references:

Friendly, Michael, Online Statistics
http://www.math.yorku.ca/SCS/Online/

Hoyle, Larry, Examples of Connecting SAS to
WWW
http://www.ukans.edu/cwis/units/IPPBR/ksdata/ksda
ta.htm#ecsw

Hoyle, Larry. “Choosing a Method for Connecting
Java to the SAS System Across the Internet -
CGI, JDBC or Socket?” Proceedings of the Twenty-
Second Annual SAS Users Group International
Conference., San Diego, March 1997.

Hoyle, Larry, “SAS Software and the WWW - What
Next?”, Proceedings of the Twenty-First Annual SAS
Users Group International Conference., Chicago,
March 1996.

Hoyle, Larry, More on using SAS with WWW
MidWest SAS Users Group Conference, Cleveland,
October 1995.

Hoyle Larry, Connecting SAS to the World Wide
Web - Forms Across the Internet MidWest SAS
Users Group Conference (MWSUG94) Omaha,
September 1994

Sun Microsystems Inc., JavaSoft Home Page
http://java.sun.com/

Sun Microsystems Inc., The JDBC(tm) Database
Access API http://splash.javasoft.com/jdbc

Larry Hoyle
IPPBR, University of Kansas
607 Blake Hall
Lawrence, KS, 66045-2960
l-hoyle@ukans.edu
http://www.ukans.edu/cwis/units/IPPBR

<table>
<tr><th>46045<td>air><td>sea>
{query datasrc=“buoys”}
{sql}
select utchour, utcday, tempair, tempsea
 from weather.buoys
 where buoy = 46045
{/sql}
{eachrow}
<tr>
<th>{&utcday}/{&utchour}<td>{&tempair}<td>{&tempsea}
{/eachrow}
{/query}
</table>

SAS Institute Web Tools - htmSQL
http://www.sas.com/rnd/web/htmsql.html

